
The FL model consistently outperforms Individual models for each of the 
users, including large manufacturers with a lot of training data. As we add 
noise related to differential privacy to the federated learning model, F1 
values drop significantly across the board. Applying fine tuning in this case 
helps bring it back up to the point, where it is again advantageous for each 
party to participate in the federation. 

Private Cross-Silo Federated Learning For 
Extracting Vaccine Adverse Event Mentions 

Personalization helps recover the accuracy lost by 
enforcing differential privacy in Federated Learning

Automatically extracting mentions of suspected drug or vaccine adverse 
events (potential side effects) from unstructured text is critical in the current 
pandemic, but small amounts of labeled training data remains silo-ed across 
organizations due to privacy concerns. Federated Learning (FL) allows such 
users to jointly train a more accurate global model without physically sharing 
their data. We study this in the context of Named Entity Recognition (NER) 
task for a vaccine adverse event detection application. We ask the following 
questions as part of this study: 
• Does FL perform better than individual models across users?
• Does accuracy drop when differential privacy (DP) is introduced?
• Does personalization help improve accuracy over FL and mitigate DP-FL’s 

accuracy loss enough to re-incentivize users to participate in the 
federation?

In the paper, we also show results on robustness to varying parameters of DP 
and stability against uncertainties of real world, such as users dropping out.

Private Federated Learning with Fine Tuning

NER for the Vaccine Adverse Event Detection 
Reporting System (VAERS) Dataset

The prominent surveillance system for vaccines is the U.S. Centers for 
Disease Control and Prevention (CDC) and the Food and Drug 
Administration (FDA) Vaccine adverse Event reporting System (VAERS). 

Each VAERS report includes a textual narrative describing the adverse 
event, along with other metadata, for example:

“Approximately 5 minutes after being given immunizations listed below pt
started to cough and wheeze” 

Named Entity Recognition (NER) Task: Automatically extract mentions 
of adverse events from unstructured data

We use a BiLSTM architecture, which consists of three major components: 
(1) a word representation layer made of word embeddings, (2) two stacked 
layers of bidirectional long short-term memory (LSTM) cells, and (3) a 
feedforward layer that performs the final BIO sequence labeling. 

Conclusion
Extracting mentions of vaccine adverse events using machine learning 
methods is an extremely urgent task right now. Federated Learning is a 
promising approach for breaking down organizational and geographical 
barriers to collaboration on building very effective models to solve this 
problem. Our work demonstrates that manufacturers with dataset of all 
different sizes can benefit from participating in such a federation, and that 
the loss of accuracy incurred through adding additional layers of privacy 
can be mitigated by introducing personalization. 

‘ Vaccine Manufacturer’ is a field in the public VAERS database that identifies the manufacturer of the vaccine reported in the
VAERS form. There is no relationship between this field and the reporter. ‘Num VAERS Reports’ does not represent the rate of
adverse events associated with the manufacturer or its products and cannot be used to estimate such rates. The statistics are
based on a sample of reports submitted to VAERS between 2015-2017 whose MedDra coded adverse events appeared in the
narrative. Because the statistics are based on a carefully selected sample, the distribution of reports shown may not represent
the true distribution of reports associated with different vaccine manufacturers.
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in section 4, which yield a set of models, one per manufacturer, that
we call FT. Next, we introduce local differential privacy to the FL
model, as described in section 4. We use � = 2.0 for this first set of
experiments as it is considered a fairly conservative privacy setting
in the literature [1] and calculate the sigma values suitable per user.
We call this private federated learning variant DP-FL. Finally, we
fine tune this private FL model and call it FT-DP-FL.

The training parameters for all of these algorithms were tuned
using a separate tuning dataset. We use a learning rate of 0.01 and
train all the federated models for 20 rounds of FedAvg, with addi-
tional 20 epochs for the fine tuning variants at each manufacturer.
For evaluation, we compute the precision, recall, and F1 of each
token label on a 1-vs-all basis. The values reported are the mean F1
score (henceforth called F1) for the labels at the beginning or inside
of an adverse event mention.

We ask the following questions as part of this study. Does FL
perform better than Ind models across users? What happens when
differential privacy is introduced? Does personalization help improve
accuracy over FL and mitigate DP-FL’s accuracy loss enough to re-
incentivize users to participate in the federation? If fine-tuning based
personalization helps mitigate accuracy loss due to DP, how robust
is it to varying parameters of DP? Finally, we ask if the federation
is stable enough for the uncertainties of real world, such as users
dropping out? We also analyze the incentive structure that emerges
for users with varying amounts of training data.

5.3 Private Federated Learning with

Personalization

Figure 2 shows the F1 values for each of the described models on
the individual users’ test sets. Note that the manufacturers on the
x-axis are sorted based on the size of their training sets. As we can
see, the FL model consistently outperforms Ind models for each
of the users, including large manufacturers with a lot of training
data. As table 2 shows, the amount of error reduction over the Ind
model for each user is substantial. Contrary to findings by Yu et.
al. [64], in our case, personalization based on fine tuning FT-FL
performs worse than FL in most cases. As we add noise related to
differential privacy to the federated learning model, F1 values drop
significantly across the board. This makes participation for larger
manufacturers in the federation unattractive, since the DP-FL model
ends up performing worse than their Ind models. However, applying
fine tuning in this case helps bring it back up to the point, where it
is again advantageous for each party to participate in the federation.
This shows that personalization based approach can help mitigate
the loss of accuracy from introducing differential privacy.

It is interesting to note that for small manufacturers, with an
exception of one with very small amount of evaluation data, it is
always beneficial to participate in the federation, even for DP-FL,
with or without personalization. For large manufacturers however,
the DP is only attractive in the presence of the mitigation offered by
fine-tuning based personalization (FT-DP-FL).

5.4 Robustness to Differential Privacy Noise

Next, we study the effectiveness of personalization in recovering
from the accuracy loss resulting from differential privacy noise. We
vary the parameter � and measure F1 averaged across users for two
of the algorithm variants: differentially private federated learning

Figure 2: F1 per manufacturer for different methods for � = 2.0

Vaccine Individual FL FT-DP-FL

Manufactuer F1

F1 Error Red. F1 Error Red.

Merck Co. Inc. 80.10 82.00 9.55% 81.20 5.53%
Sanofi Pasteur 84.60 90.40 37.66% 88.40 24.68%
Pfizer-Wyeth 80.50 87.00 33.33% 84.60 21.03%
Glaxo-Smithkline 80.20 82.20 10.10% 85.30 25.76%
Biologicals
Novartis Vaccines 77.80 85.80 36.04% 81.50 16.67%
And Diagnostics
CSL Limited 67.10 88.50 65.05% 78.30 34.04%
Medimmune 69.30 83.50 46.25% 81.10 38.44%
Vaccines Inc.
Seqirus Inc. 15.00 82.10 78.94% 52.60 44.24%
Emergent 30.10 89.70 85.26% 71.90 59.80%
Biosolutions
Berna Biotech 45.80 95.40 91.51% 82.50 67.71%
Ltd.

Table 2: F1 and Error Reduction with Federated Learning and Private Feder-

ated Learning with Fine Tuning

Figure 3: Average F1 across users for the two differentially private FL variants.

(DP-FL) and the fine tuned differentially private federated learning
(FT-DP-FL). As we can see from Figure 3, average F1 for DP-FL
deteriorates significantly for values of � less than 2. However, even
in these cases, the personalized version, FT-DP-FL manages to retain
its performance. We believe this is an important finding that provides
significant latitude to differentially private FL frameworks to further
tighten the privacy budget of � without compromising utility.

5.5 Stability of Federation against Users Leaving

Building a federation across organizations can be challenging in
the real world due to a variety of factors. For instance, users may
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Experimental Setup

Results

The VAERS data (de-identified) is publicly available in structured format. 
For this study, we took ~18k reports from 2014-2017, and annotated it to 
create training data. We split these reports by the names of the 
manufacturers of the vaccine, and use 60% data for training, 10% for 
tuning, 10% for validation, and 20% for testing. We compute the precision, 
recall, and F1 of each token label on a 1-vs-all basis.

As the first baseline for our experiments, we train Individual models (Ind), 
i.e. assume that each manufacturer only uses their own training set, and 
test on their respective test set. This baseline represents the case in which 
the manufacturer chooses not to participate in the federation at all. 

For FL, we use a learning rate of 0.01 and train all the federated models for 
20 rounds of FedAvg, with additional 20 epochs for the fine tuning variants 
at each manufacturer. For enforcing DP, we use epsilon =2.0 and calculate 
the sigma values suitable per user. 

For FL, we use one of the most widely used method of aggregation, FedAvg
(McMahan et al. (2016)), where user parameters updates are averaged at the 
federation server and applied to the global model. 

Noting privacy concerns, more recent work has proposed addition of differential 
privacy to FL. To enforce local DP, we use the algorithm proposed by Abadi et 
al. (2016) that injects gaussian noise (calculated using their moments 
accountant algorithm) in parameter gradients during local training at each user. 

Researchers have recently proposed different forms of personalization 
approaches to remedy the problem of model degradation due to DP 
enforcement (Peterson et al. (2019); Yu et al. (2020)). We use FL with Fine 
Tuning Yu et al. (2020), and call the model FT-DP-FL. 


