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ABSTRACT

RESOURCE-BOUNDED INFORMATION ACQUISITION
AND LEARNING

MAY 2012

PALLIKA H. KANANI

B.E., UNIVERSITY OF MUMBAI

M.S., NEW YORK UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McCallum

In many scenarios it is desirable to augment existing data with information ac-

quired from an external source. For example, information from the Web can be used

to fill missing values in a database or to correct errors. In many machine learning and

data mining scenarios, acquiring additional feature values can lead to improved data

quality and accuracy. However, there is often a cost associated with such information

acquisition, and we typically need to operate under limited resources. In this thesis, I

explore different aspects of Resource-bounded Information Acquisition and Learning.

The process of acquiring information from an external source involves multiple

steps, such as deciding what subset of information to obtain, locating the documents

that contain the required information, acquiring relevant documents, extracting the

specific piece of information, and combining it with existing information to make

useful decisions. The problem of Resource-bounded Information Acquisition (RBIA)

vii



involves saving resources at each stage of the information acquisition process. I ex-

plore four special cases of the RBIA problem, propose general principles for efficiently

acquiring external information in real-world domains, and demonstrate their effective-

ness using extensive experiments. For example, in some of these domains I show how

interdependency between fields or records in the data can also be exploited to achieve

cost reduction. Finally, I propose a general framework for RBIA, that takes into

account the state of the database at each point of time, dynamically adapts to the re-

sults of all the steps in the acquisition process so far, as well as the properties of each

step, and carries them out striving to acquire most information with least amount

resources.
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CHAPTER 1

INTRODUCTION

1.1 Problem Overview and Motivation

Information is a valuable commodity and in many scenarios, we would like to ac-

quire additional information from an external source. For example, we can increase

the utility of most databases by filling in missing, incomplete or uncertain infor-

mation. Accuracy of most data mining applications can be improved by acquiring

additional features and instances. The source of this additional information can be

an external, structured database, a semi-structured or unstructured document cor-

pus, or an extremely large, heterogenous corpus, such as the Web. However, there

is often a significant cost associated with gathering and integrating this additional

information. It is not desirable, and even prohibitive, for example, to purchase every

available database or crawl and parse every page on the web. The resources required

for this task may include computer processing, storage space, network bandwidth,

database schema mapping, as well as monetary, time, human, and administrative

costs. Resource-bounded Information Acquisition (RBIA) is the process of efficiently

allocating and targeting expensive or scarce resources to find, acquire and integrate

the most beneficial additional information.

Consider the process of efficiently acquiring external information. The first step is

often deciding what information to obtain, since some information may be more valu-

able than other, motivating us to prioritize the acquisition of those pieces that would

help achieve our final goal. In some cases, the required information may be readily

available in a suitable form on the external source. However, in most scenarios, it may
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be embedded in a structured, semi-structured, or unstructured document, which, in

turn is part of a large corpus. In such scenarios, we need to request the external source

for location of the document, via a search interface. After locating relevant documents

that potentially contain the required information, we need to transfer them to our

local computing device, before we can process them. If the external information is not

in a structured form, we need to process these documents to extract the specific piece

of information that we are interested in. Also, as new information arrives, we need to

combine it with existing information, so as to make decisions about our confidence in

the values of the database entries. Resource-bounded Information Acquisition con-

siders steps to reduce efforts at each of these stages of information gathering process.

In this thesis, I propose a broad RBIA framework, and explore various special cases

thereof.

In practice, the amount of resources we can save is application-specific, and there

is a wide spectrum of applications that provide opportunities to save information

gathering resources. Consider a toy-world information gathering setup. Let us assume

that we have 10 units of resources of some type, and 10 units of information to acquire.

Figure 1.1 shows examples of information gathering scenarios that represent different

degrees of resource saving opportunities. At one end of the spectrum are examples

1.1(a) and (b), in which absolutely no resource-saving is possible. In 1.1(a), each step

in the information gathering process is independent of each other, and helps acquire

exactly equal amount of information. Hence, we must use all 10 units of resources to

acquire the required information. The example 1.1(b) represents a case, in which we

only need one unit of the resource to acquire all the information. However, before we

can carry out the step that acquires this information, we must use 9 units of resources

on steps that must precede it. On the other end of the spectrum is the case, in which

we only need one unit of resource to acquire all information, as shown in 1.1(c).

This provides an opportunity for significant resource savings, provided we know the
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correct ordering of steps. Most real world applications lie somewhere between these

two extreme scenarios. 1.1(d) shows such a realistic scenario, in which we have the

opportunity to acquire all or most of the information using only a fraction of the total

resources.

(a) No resource savings (b) No resource savings

(c) Significant resource savings (d) Some resource savings

Figure 1.1. Example Information Gathering Scenarios

The application domains I study in this thesis cover a broad range of the RBIA

problem spectrum, and the methods I propose spread across various aspects to be

considered when designing solutions for RBIA problems. In some instantiations of

the RBIA framework, we save resources by focusing on only a few stages of informa-

tion acquisition process, such as selecting a subset of the input instances for which

to acquire information. Other instantiations provide a broader view, by saving re-

sources on each stage of the acquisition process. In some domains, we exploit the

interdependency within the input data, whereas in other domains, we develop more

general methods applicable even when the input instances are non-relational. The

goal of this thesis is to develop a comprehensive framework for Resource-bounded In-
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formation Acquisition, that takes into account the state of the database, the results

of all the steps in the acquisition process so far, as well as the properties of each step,

and carries them out so as to acquire most information with least resources.

1.2 RBIA General Problem Definition

We are given a database with a set of missing or uncertain values, and access to

an external source of information. We define the following four types of resource-

consuming, information acquisition actions:

• Query: Issue information or search request to the external source

• Download: Transfer a document from the external source to a local device

• Extract: Process a document to extract the required piece of information

• DB-Inference: Use the information from extraction or available within the

database to adjust database values.

The problem of Resource-bounded Information Acquisition (RBIA) is to select the

‘best’ among all available actions at each point of time, so as to acquire most infor-

mation, using least amount of resources.

1.3 Information Acquisition Actions

We can view the database as a collection of variables with missing, or uncertain

values. Each of the information acquisition actions defined above help obtain more

accurate values for these variables. Let us examine the nature of these actions, as

well as the types of resources they consume in further detail.

The query action consists of issuing a request to the external information source

for returning the required information, or the location thereof (e.g., a web-search

API). For each variable with missing or uncertain value, there may be multiple types
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of queries, some more effective than others, that can aid in obtaining information.

This leads to a large number of possible queries to be issued. However, there may

be several types of resources consumed in issuing such queries. For example, issuing

all types of queries for every instance, or for every feature of each instance may be

time consuming. There may be a restriction on the number of queries allowed by the

search interface (as in the case of web queries). There may also be monetary cost

involved, if buying the information from an external source. Selecting a query action,

therefore, involves selecting the input variable for which to acquire information, as

well as the type of query used to acquire it. Hence, we can view the query action

to have the following parameters: an input instance, a specific feature or field of an

input instance, and the type of query to be issued.

In many information acquisition scenarios, the required information resides on the

external source in the form of documents. We need to transfer such documents to

our local computing device, before we can access the required information. This task

is carried out through a download action. Based on the nature of the information

interface provided by the external source, we may be faced with the option of acquiring

a large number of documents provided as a result of a query action (e.g., web-search

results). The resources typically consumed in this process are network bandwidth

and storage space. In some cases, there may be a monetary cost associated with

obtaining each document. Hence, we must transfer only a subset of these documents

to conserve resources.

When acquiring information from semi-structured or unstructured documents, we

may need to apply sophisticated and computationally expensive methods for extract-

ing the specific piece of information required. An extract action consists of performing

extraction on the downloaded document to obtain the required piece of information

and using it to fill the slot in the original database. Note that even after deciding to

download a document, we may find from preliminary examination that the document
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is not suitable for extraction. In such scenarios, we may decide not to perform an

extract action.

By taking the view of database as a collection of variables, we can define our

information goals in terms of finding their true values. We can use information al-

ready available in the database, along with that acquired from the external source

to infer missing values of the variables. In many scenarios, there may be uncertainty

associated with existing values in the database, and the additional information may

serve to reduce it. We call the process of using all available information to determine

the values of database variables as a db-inference action. In some cases, for example,

if the database variables are i.i.d., the db-inference may consist of evaluating a con-

fidence measure on their values. In the case when input data is relational in nature,

db-inference may take a more complex form. In the following chapters, we will see

examples of each of these scenarios.

Before selecting an action to perform at each time step, we need to consider several

factors. We need to take into account the current state of the database, such as the

number of slots filled and the uncertainty about them. We need to take into account

the context provided by the intermediate results of all the actions so far, such as the

results of the queries, documents that are not yet downloaded and processed. Even if

this context is not yet in the database, these intermediate results can provide valuable

information for deciding which action to select. Finally, we also need to consider the

properties of the candidate action itself, before selecting it.

It is important to note that for a given RBIA system, some of these actions may

be non-existent or trivial. Also, they may interact with each other in interesting

ways. Consider the following scenario: the system may face a choice between running

a really complex, expensive inference on the data that already exists in the database

and running an inexpensive query to acquire it from an external source. Another

scenario is, after performing some db-inference, we learn that we know the value of a
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variable with high confidence, and hence decide not to issue the corresponding query.

We will see examples of such scenarios in this thesis.

Another issue to note is that in many cases, all information acquisition actions

may not be available initially. Some actions may be created, or instantiated as a result

of other actions. For example, in the case of extracting information from the Web,

the query actions can be initialized at the beginning of the task because we know

which instances have missing fields, and the types of queries that can be used; but

download actions and extract actions are generated dynamically and added to the list

of available actions. That is, after a query action is performed, the download action

corresponding to each of the search results is generated. Similarly, after a web page is

downloaded, the corresponding extract action is generated. At each time point, only

the actions that are instantiated can be considered as alternative valid actions to be

performed.

1.4 The RBIA Solution Landscape

On a broad level, Resource-bounded Information Acquisition (RBIA) is a multi-

dimensional problem and we need to consider following issues while designing the

classes of solutions to a given RBIA problem. One way to view RBIA is as a subset

selection problem, in that we can either choose to select a subset of input instances

for which to obtain information, or select a subset of information to acquire. Another

dimension to study is myopic vs. non-myopic information acquisition. The designed

solution may be static, i.e. follow a pre-determined plan, or dynamic, and adapt to

the changing information scenario. Furthermore, we may be given a fixed resource

budget to operate under, or we need to design a solution, such that we get the best

possible resource-utilization at each step of the information gathering process. If

the information acquired is used for a machine learning application, we also need to

consider if it would be used at train or test time. Finally, the relational nature of
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data poses interesting questions and opportunities for optimal resource allocation.

In this thesis, I present example domains and corresponding solutions that explore a

large portion of this multi-dimensional space, and propose a framework that is general

enough to design a good solution, based on the given RBIA problem definition.

1.5 Thesis Outline

• Related Work(Chapter 2). I describe how my work is uniquely positioned

between other approaches in this area.

• Resource-bounded Information Gathering for Graph Partitioning (Chap-

ter 3). I present a special case of RBIA, in which the input instances are inter-

related, and we need to select a subset of queries to issue. I formulate the

problem of selectively acquiring additional information in the context of graph

partitioning for entity resolution. The two approaches presented to improve

the quality of the underlying graph by using external information are: improv-

ing the accuracy of edge weights and adding new nodes, so as to aid in better

partitioning of the data. I propose multiple criteria for selecting edges in the

graph, such that obtaining more information about them leads to a high over-

all impact on the partitioning. I empirically demonstrate effectiveness of the

expected entropy based approach for edge selection, which takes into account

the global impact of new information, as opposed to local uncertainty. I also

propose methods for effectively incorporating additional nodes in the graph and

discuss their application. Finally, I describe a general, theoretical open problem

that stems out of this work.

• Test-time Active Information Acquisition (Chapter 4). Next, I present

another instantiation of RBIA, in which the focus is again on selecting a subset

of instances for which to acquire external information, i.e. a subset of queries,
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but the input instances are not interdependent. This work generalizes the meth-

ods presented for the case of information acquisition for graph partitioning for

the i.i.d. input case. Building on previous work in active feature acquisition

at train time, I present methods for effectively selecting instances for acquiring

additional features at test time. Class labels are useful in evaluating the value

of acquiring features, and they are available at train time, but not at test time.

In this work, we show how to circumvent this problem, which is one of the key

contributions. Extensive experimental results on customer targeting applica-

tions confirm that our proposed approaches can effectively select instances for

which it is beneficial to acquire more information to classify them better, as

compared to acquiring additional information for the same number of randomly

sampled instances.

• Exploiting Interdependency for Resource-bounded Information Ex-

traction (Chapter 5). In this instantiation of RBIA, I expand my focus to

include all steps of the information acquisition process, instead of focusing only

on selecting the input queries. I consider the case, in which the required infor-

mation must be extracted from web documents, and introduce the problem of

Resource-bounded Information Extraction (RBIE). The main contribution of

this work is the idea of information propagation through the network of input

instances for reducing uncertainty, which in turn leads to reduction in required

resources for acquiring new information. However, the majority of resource sav-

ings in this domain come from exploiting interdependency in the input data

to improve resource utilization, hence, it is not generalizable to all domains.

Another drawback of this method is that it fails to capture the interactions

between various information acquisition steps, so as to order them effectively.
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• Resource-bounded Information Extraction for the Web as an MDP

(Chapter 6). I propose a general framework for RBIE that overcomes the draw-

backs of previous methods. It does not depend on the relational nature of the

input data, making it more generally applicable, and considers all types of avail-

able steps simultaneously for effective information acquisition. It also adapts

the information gathering approach dynamically, based on the results of the

steps so far, making it a flexible and effective approach. I use Markov Decision

Process for targeted, resource-bounded information extraction from the Web. I

also demonstrate the effectiveness of temporal difference q-learning in learning

to make sequential decisions from data for two example tasks, and compare

it to an online, error-driven algorithm called SampleRank, along with strong

baselines. The proposed methods are able to obtain a large portion of the total

information, using only a fraction of resources.

• Future Work (Chapter 7). I describe directions for extending or improving

the proposed framework in the future.

1.6 Thesis Contributions

Here are the specific contributions of my thesis:

• I provide a specific definition of an important class of problems, called Resource-

bounded Information Acquisition (RBIA). I believe that this problem formu-

lation encompasses different aspects of the domains in which they occur, and

facilitates development of useful solutions.

• In this thesis, I ask and answer the following question. Given naturally occur-

ring problem domains with incomplete information, is it possible to significantly

reduce the amount of resources required to acquire additional, external infor-

mation? I demonstrate using various empirical evaluations, that we can indeed
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achieve a large fraction of the total benefit from new information, by only us-

ing a small fraction of the resources. For instance, in the task of extracting

faculty information from the Web, we are able to achieve 88.8% of the final F1

value (that we would have been able to achieve by using all possible resource-

consuming actions), by only using 8.6% of the total actions.

• I propose a novel framework for solving RBIA problems. I demonstrate the ef-

fectiveness of this framework on four problem domains, and four special cases of

the framework showing the generality and applicability of the proposed frame-

work.
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CHAPTER 2

RELATED WORK

Learning and acquiring information under resource constraints has been studied

in various forms. In this chapter, I describe different aspects of this problem and how

my work is uniquely positioned between them. I start by discussing classical work

in information extraction tasks, followed by methods aimed at large scale informa-

tion extraction from the Web. Next, I discuss general active information acquisition

methods, and finally more theoretical work in resource-bounded reasoning.

2.1 Information Extraction From the Web

In the traditional information extraction settings, we are usually given a database

schema, and a set of unstructured or semi-structured documents. The goal of the sys-

tem is to automatically extract records from these documents, and fill in the values in

the given database. These databases are then used for search, decision support and

data mining. In recent years, there has been much work in developing sophisticated

methods for performing information extraction over a closed collection of documents

[35, 47]. Several different approaches have been proposed for different phases of in-

formation extraction task, such as segmentation, classification, association and coref-

erence. Most of these proposed approaches make extensive use of statistical machine

learning algorithms, which have improved significantly over the years. However, only

some of these methods remain computationally tractable as the size of the document

corpus grows. In fact, very few systems are designed to scale over a corpus as large

as, say, the Web [28, 97].
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Early work on extracting information from the Web was conducted by Brin [12]

and Etzioni et al. [29]. Rennie and McCallum [73] built a web spider using Rein-

forcement Learning, which served as a foundation for some of the ideas presented in

Chapter 6. There are some large scale systems that extract information from the

web. Among these are KnowItAll [28, 30], InfoSleuth [70] and Kylin [93]. The goal

of the KnowItAll system is a related, but different task called, “Open Information

Extraction.” In Open IE, the relations of interest are not known in advance, and

the emphasis is on discovering new relations and new records through extensive web

access. In contrast, in our task, what we are looking for is very specific and the

corresponding schema is known. The emphasis is mostly on filling the missing fields

in known records, using resource-bounded web querying. Hence, OpenIE and RBIE

frameworks have very different application domains. InfoSleuth focuses on gathering

information from given sources, and Kylin focuses only on Wikipedia articles. Among

other systems that aim to extract entity names and relations from the web are, NELL

[13], SOFIE [82], DBLife [21], Cyclex [14], xCrawl [79], Factzor [91], and WebSets

[19]. These systems also do not aim to exploit the inherent dependency within the

database for maximum utilization of resources, as we do in Chapter 5. Gatterbauer

[31] provides interesting theoretical insights into exploiting redundancy on the Web

for obtaining the required coverage of data.

Agichtein and Gravano [1] develop an automatic query-based technique to retrieve

documents useful for the extraction of user-defined relations from large text databases

and improve the efficiency of the extraction process by focusing only on promising

documents. Similarly, Agrawal et al. [2] tackle “ad-hoc” entity extraction task, where

entities of interest are constrained to be from a list of entities that is specific to the

task. They propose an approach that uses an inverted index on the documents to only

process relevant documents. Huang et al. [38] propose a prioritization approach where

candidate pages from the corpus are ordered according to their expected contribution
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to the extraction results and those with higher estimated potential are extracted

earlier. The RBIE framework presented in this thesis provides a more general and

adaptable approach, with not just document filtering and ranking, but a sequential

decision making process for better resource utilization. Elliasi-Rad [26] explored the

problem of building an information extraction agent, but did not address the problem

of acquiring specific missing pieces of information on demand.

The Knowledge Base Population (KBP) Track, which is part of the Text Analy-

sis Conference focuses on related tasks. The emphasis in these tasks is, however on

filling slots in Wikipedia info boxes, and not general purpose, targeted information

extraction tasks. The Information Retrieval community is rich with work in docu-

ment relevance (TREC). However, traditional information retrieval solutions can not

directly be used, since we first need to automate the query formulation for our task.

Also, most search engine APIs return full documents or text snippets, rather than

specific values.

A family of methods closely related to RBIE is question answering systems [51].

These systems do retrieve a subset of relevant documents from the web, along with

extracting a specific piece of information. However, they target a single piece of in-

formation requested by the user, whereas we target multiple, interdependent fields

of a relational database. They formulate queries by interpreting a natural language

question, whereas we formulate and rank them based on the utility of the information

within the database. They do not address the problem of selecting and prioritizing

instances or a subset of fields to query. This is why, even though some of the compo-

nents in our system may appear similar to that of QA systems, their functionalities

differ. The semantic web community has also been working on similar problems, but

the focus is not targeted information extraction. A few systems have been developed

for extracting researcher information from the Web [84, 96, 52, 68, 66, 67], some of

which use regular expressions, and others use more formal models like Conditional
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Random Fields for extraction, but none of them focus on sequential decision making

for resource optimization, as described in chapter 6.

2.2 Active Information Acquisition

Learning and acquiring information under resource constraints has been studied

in various forms. For a comprehensive overview of various information acquisition

scenarios, please refer to [40]. Settles [78] provides a good survey of active learning

literature. We first look at different information acquisition scenarios at training

time. The most common scenario is active learning [15, 85, 74], which assumes

access to unlabeled instances with complete feature values and attempts to select

the most useful instances for which to acquire class labels while training. The next

scenario is active feature acquisition, which explores the problem of learning models

from incomplete instances by acquiring additional features[62, 61, 71]. The general

case of acquiring randomly-missing values in the instance-feature matrix is addressed

in [63, 64]. Our work, as described in chapter 4 builds on these ideas. More recent

work [80, 23, 24] deals with learning models using noisy labels. A related problem,

proactive learning [95], is a generalized form of active learning where the learner must

reach out to multiple oracles exhibiting different costs and reliabilities. Attenberg et

al. [4] introduce the problem of active inference, in which human labels are requested

for inference with a limited labeling budget. The idea of labeling features, instead

of labels has been studied under the generalized expectation criteria by Druck et al.

[25], and Attenberg et al. [4].

Under the “budgeted descriminative attribute learning” (BDAL) scenario [53], all

of the labels are given, the total cost to be spent towards acquisitions is determined

a priori, and the task is to identify the best set of attribute values to be acquired for

this cost. This model takes into account the dependencies among attributes as well

as the dependencies between the attributes and the labels. Also, different attributes
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can have different costs. Another budgeted learning scenario is the “budgeted distri-

bution learning” (BDL) framework proposed in [50, 65, 56]. The main goal of BDL

framework is to build a generative model, as opposed to a discriminative model of

BDAL, and does not distinguish between attributes and labels. The BDL work is

also related to the “interventional active learning” (IAL) framework [86]. Here, the

learner sets the values of a fixed set of features (interventions), and then acquires the

values of the remaining instances at a fixed cost. Esmeir et al. [27] study anytime al-

gorithms for producing tree-based classifiers that can make accurate decisions within

a strict bound on testing costs. Turney [87] created a taxonomy of the different types

of cost that are involved in inductive concept learning.

There has also been some work on prediction-time AFA, but the focus has been

on selecting a subset of features to acquire, rather than selecting a subset of instances

for which to acquire the features. For example, Bilgic et al.[7] exploit the conditional

independence between features in a Bayesian network for selecting a subset of features.

Similarly, Sheng et al. [81] aim to reduce acquisition cost and misclassification under

different settings, but their approach also focuses on selecting a subset of features.

Wu et al. [94] study the problem of online streaming feature selection, in which

the size of the feature set is unknown, and not all features are available for learning

while leaving the number of observations constant. In this problem, the candidate

features arrive one at a time, and the learner’s task is to select a ‘best so far’ set

of features from streaming features. Krause et al. [45] apply the theory of value of

information, but their method is mostly restricted to chain graphical models. Golovin

et al. [33] tackle the problem of Bayesian active learning with noise, to adaptively

select from a number of expensive tests in order to identify an unknown hypothesis

sampled from a known prior distribution. Gatterbauer [32] presents an abstract

model of information acquisition from redundant data, and characterizes the process

of randomized sampling from biased information.
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The interdependency within the data set is often conveniently modeled using

graphs, but it poses interesting questions about selection of instances to query and

propagating uncertainty through the graph [41]. Chapter 3 describes the case in

which the test instances are not independent of each other, and we study the impact

of acquisition in the context of graph partitioning. Similar problems are addressed in

[8, 72]. Bilgic et al. [9] introduce a novel active learning algorithm for classification

of network data, whereas Kuwadekar et al. [46] combines semi-supervised learning

and relational resampling for active learning in network domains. Macskassy [54]

also exploits graph structure in the data to select candidates for labeling. Nath and

Domnigos [69] combine graphical models with first order logic to provide a general

language for relational decision theory. Ideas from other fields, such as graph theory

[20] and circuit design [55] can also be borrowed in this context. The general RBIE

framework described in chapter 5 aims to leverage these methods for both train

and test time for optimization of query and instance selection, depending on the

application scenario.

2.3 Resource-bounded Reasoning

Another body of related work is in the area of preference elicitation, which is the

task of gathering the preference or utility function of specific users. Boutilier [11] ar-

gues that determining which information to extract from a user is itself a sequential

decision problem, balancing the amount of elicitation effort and time with decision

quality, and hence formulates this problem as a partially-observable Markov decision

process (POMDP). This idea is similar to our MDP formulation for Resource-bounded

Information Extraction. Connections between concept learning and preference elici-

tation have been explored by Blum et al. [10]. More recently, Boutilier et al. [16, 17]

presented a regret based model for utility elicitation that allows users to define their

own subjective features over which they can express their preferences. Bardak et al.
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[6] present a similar task of scheduling a conference based on incomplete data about

available resource and scheduling constraints, and describe a procedure for automated

elicitation of additional data. More recently, Viappiani et al. [88] present an analysis

of set-based recommendations in Bayesian recommender systems, and show how to

generate myopically optimal or near-optimal choice queries for preference elicitation.

Knoblock et al. [44] introduced the idea of using planning for information gath-

ering, followed by the development of resource-bounded reasoning techniques by Zil-

berstein et al. [99]. Value of information, as studied in decision theory, measures

the expected benefit of queries [100, 37]. Resource-bounded reasoning studies the

trade offs between computational commodities and value of the computed results

[99]. Grass and Zilberstein [34] present a system for autonomous information gath-

ering that consider time and monetary resource constraints. Their system uses an

explicit representation of the user’s decision model, which is not the focus of our

work. However, the Expected Utility approach described in this thesis follows these

ideas. As proposed RBIE framework develops further, more formal models of cost

and utility can be applied for better performance with respect to the user’s utility

function. Lesser et al. [48] also build a planning based resource-bounded information

gathering agent, that locates, retrieves, and processes information to support a deci-

sion process. This work provides interesting insights into the architecture of building

such a system, and address some aspects of information gathering that we do not.

However, we believe that the RBIE framework is more flexible in terms of being able

to define general purpose actions, as information acquisition scenarios change.

Arnt et al. [3] apply decision theoretic ideas for the problem of sequential time

and cost sensitive classification. Kapoor et al. [42] provide a theoretical analysis of

budgeted learning when the learner is aware of cost constraints at prediction-time.

This work is followed up [43], with information acquisition strategies that bridge the

gap between training and test time. The idea of value of information for resource-
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bounded computation has also been applied in various other domains, for example,

Vijayanarasimhan et al. [89] apply it in computer vision for visual recognition and

detection. This demonstrates the generality and importance of ideas considered in

this thesis.
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CHAPTER 3

RESOURCE-BOUNDED INFORMATION GATHERING
FOR AUTHOR COREFERENCE

3.1 Introduction

Machine learning and web mining researchers are increasingly interested in using

search engines to gather information for augmenting their models [28, 57, 22]. Some

of these methods rely on issuing queries to a web search engine API, such as Google

to acquire the required information. For a given problem, there can be multiple types

of queries issued, some more useful than others. In many real world applications,

there may be a large number of input instances, and issuing even a single type of

query for all input instances maybe extremely expensive. However, we may be able

to exploit the fact that information for some input instances may be more valuable

than others in achieving improved accuracy on the final task. This gives rise to the

problem of efficiently selecting the queries that would provide the most benefit. We

refer to this problem as Resource-bounded Information Gathering (RBIG) from the

Web.

Let us examine this problem in the domain of entity resolution. Given a large set

of entity names (each in their own context), the task is to determine which names

are referring to the same underlying entity. Often these coreference merging decisions

are best made, not merely by examining separate pairs of names, but relationally,

by accounting for transitive dependencies among all merging decisions. Following

previous work, we formulate entity resolution as graph partitioning on a weighted,

undirected, fully connected graph, whose vertices represent entity mentions, and edge
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weights represent the probability that the two mentions refer to the same entity.

In this chapter, we explore a relational, graph-based approach to resource-bounded

information gathering, i.e., the db-inference action from the RBIA framework takes

the form of graph partitioning.

The specific entity resolution domain we address is research paper author corefer-

ence. The vertices in our coreference graphs are citations, each containing an author

name with the same last name and first initial. Coreference in this domain is ex-

tremely difficult. Although there is a rich and complex set of features that are often

helpful, in many situations they are not sufficient to make a confident decision. Con-

sider, for example, the following two citations both containing a “D. Miller.”

• Mark Orey and David Miller, Diagnostic Computer Systems for Arithmetic,

Computers in the School, volume 3, #4, 1987

• Miller, D., Atkinson, D., Wilcox, B., Mishkin, A., Autonomous Navigation

and Control of a Mars Rover, Proceedings of the 11th IFAC Symposium on

Automatic Control in Aerospace, pp. 127-130, Tsukuba, Japan, July 1989.

The publication years are close; and the titles both relate to computer science,

but there is not a specific topical overlap; “Miller” is a fairly common last name;

and there are no co-author names in common. Furthermore, in the rest of the larger

citation graph, there is not a length-two path of co-author name matches indicating

that some of the co-authors here may have themselves co-authored a third paper. So

there is really insufficient evidence to indicate a match despite the fact that these

citations do refer to the same “Miller.”

We present two different mechanisms for augmenting the coreference graph par-

titioning problem by incorporating additional helpful information from the web. In

both cases, the query action consists of a web search engine query, which is formed

by conjoining the titles from two citations. The first mechanism changes the edge
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weight between the citation pair by adding a feature indicating whether or not any

web pages were returned by the query. In this case, we omit both, the download

and extract actions, and replace them by a single piece of information (feature value)

returned by the external source.

The second mechanism uses one of the returned pages (if any) to create an ad-

ditional vertex in the graph, for which edge weights are then calculated to all the

other vertices. In this case, we do not explicitly use an extract action. The additional

transitive relations provided by the new vertex can provide significantly helpful in-

formation. For example, if the new vertex is a home page listing all of an author’s

publications, it will pull together all the other vertices that should be coreferent.

Gathering such external information for all vertex pairs in the graph is pro-

hibitively expensive, however. Thus, methods that acknowledge time, space and

network resource limitations, and effectively select just a subset of the possible queries

are proposed. The RBIA solution in this case focuses on selecting the best query ac-

tions, based on their interaction with db-inference. The methods presented in section

3.5.2 also focus on selecting effective download actions.

In theory, it is extremely difficult to analyze the effect of changing the weight of a

single edge on the overall clustering of the graph. In fact, we published this problem

of deciding which query to select first, so as to optimize the use of resources, as an

open theoretical problem [41].

3.2 General Problem Setup

Let G0(V0, E0) be a fully connected, weighted, undirected graph. Our objective is

to partition the vertices in graph G0 into an unknown number of M non-overlapping

subsets. E0 = {eij} is the set of edges in G0, where eij =< vi, vj > is an edge

whose weight wij ∝ pij. Here, pij is the probability that vertices vi and vj belong

to the same partition. We assume that pij is computed using a probabilistic model,
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with a set of existing pair-wise feature functions, fe(vi, vj). We now assume that we

can acquire a new feature, fn(vi, vj) from an external source, as a result of a query

involving information from vertices vi and vj, and that fn(vi, vj) may help improve

our estimate of pij. Our first problem is, deciding the order in which we should select

queries that correspond to edges in E0, so as to obtain most benefit using least number

of queries. Note that, for the query selection criteria to work effectively, our original

estimate of pij needs to be at least better than random. If the initial estimate of pij is

worse than random, or if the new feature fn(vi, vj) acquired from the external source

is not informative, the methods proposed here may not be effective.

We also consider the scenario in which we can expand the graphG0, by augmenting

it with additional nodes, which represent documents obtained from an external source,

such as the Web. Our assumption is that by partitioning this expanded graph, G1,

we may be able to achieve improved partitioning over the nodes in G0, by imposing

additional transitive relations. Our second problem is selecting appropriate queries

for acquiring additional nodes in G1, as well as finding a subset of these nodes to

be included in G1, so as to obtain most benefit with least amount of computational

resources. In this case, we assume that there exist some external documents that

potentially have strong affinity to multiple nodes. The methods proposed here may

not be applicable in cases when such external information doesn’t exist.

3.3 Conditional Entity Resolution Models

We are interested in obtaining an optimal set of coreference assignments for all

mentions contained in our database. In our approach, we first learn maximum entropy

or logistic regression models for pairwise binary coreference classifications. We then

combine the information from these pairwise models using graph-partitioning-based

methods so as to achieve a good global and consistent coreference decision. We use

the term, “mention” to indicate the appearance of an author name in a citation and
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use xi to denote mention i = 1, . . . , n. Let yij represent a binary random variable

that is true when mentions xi and xj refer to the same underlying author “entity.”

For each pair of mentions we define a set of l feature functions fl(xi, xj, yi,j) acting

upon a pair of mentions. From these feature functions we can construct a local model

given by

P (yi,j|xi, xj) =
1

Zx
exp(λlfl(xi, xj, yij)), (3.1)

where Zx =
∑
y exp(λlfl(xi, xj, yij)). In [58] a conditional random field with a form

similar to (3.1) is constructed which effectively couples a collection of pairwise coref-

erence models using equality transitivity functions f∗(yij, yjk, yik) to ensure globally

consistent configurations. These functions ensure that the coupled model assigns zero

probability to inconsistent configurations by evaluating to −∞ for inconsistent config-

urations and 0 for consistent configurations. The complete model for the conditional

distribution of all binary match variables given all mentions x can then be expressed

as

P (y|x) =
1

Z(x)
exp

(∑
i,j,l

λlfl(xi, xj, yij) +

∑
i,j,k

λ∗f∗(yij, yjk, yik)

)
, (3.2)

where y = {yij : ∀i,j} and

Z(x) =
∑
y

exp (
∑
i,j,l

λlfl(xi, xj, yij) +
∑
i,j,k

λ∗f∗(yij, yjk, yik)) (3.3)

As in Wellner and McCallum [2002], the parameters λ can be estimated in local

fashion by maximizing the product of Equation 1 over all edges in a labeled graph

exibiting the true partitioning. When fl(xi, xj, 1) = −fl(xi, xj, 0) it is possible to

construct a new undirected and fully connected graph consisting of nodes for men-

tions, edge weights ∈ [−∞,∞] defined by
∑
l λl(xi, xj, yij) and with sign defined by

the value of yij. In our work here we define a graph in a similar fashion as follows.
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Let G0 =< V0, E0 > be a weighted, undirected and fully connected graph, where

V0 = {v1, v2, ..., vn} is the set of vertices representing mentions and E0 is the set

of edges where ei =< vj, vk > is an edge whose weight wij is given by P (yij =

1|xi, xj)−P (yij = 0|xi, xj) or the difference in the probabilities that that the citations

vj and vk are by the same author. Note that the edge weights defined in this manner

are in [−1,+1]. The edge weights in E0 are noisy and may contain inconsistencies. For

example, given the nodes v1, v2 and v3, we might have a positive weight on < v1, v2 >

as well as on < v2, v3 >, but a high negative weight on < v1, v3 >. Our objective is

to partition the vertices in graph G0 into an unknown number of M non-overlapping

subsets, such that each subset represents the set of citations corresponding to the

same author.

We define our objective function as F =
∑
ij wijf(i, j) where f(i, j) = 1 when xi

and xj are in the same partition and −1 otherwise.

Blum et al. provide two polynomial-time approximation schemes (PTAS) for par-

titioning graphs with mixed positive and negative edge weights [5]. We obtain good

empirical results with the following stochastic graph partitioning technique, termed

here N-run stochastic sampling.

3.3.1 N-Run Stochastic Sampling

We define a distribution over all edges in G0, P (wi) ∝ e−wi

T
where T acts as

temperature. At each iteration, we draw an edge from this distribution and merge

the two vertices. Edge weights to the new vertex formulated by the merge are set

to the average of its constituents and the distribution over the edges is recalculated.

Merging stops when no positive edges remain in the graph. This procedure is then

repeated r = 1...N times and the partitioning with the maximum F is then selected.
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3.4 Coreference Leveraging the Web

Now, consider that we have the ability to augment the graph with additional

information using two alternative methods: (1) changing the weight on an existing

edge, (2) adding a new vertex and edges connecting it to existing vertices. This new

information can be obtained by querying some external source, such as a database or

the web.

The first method may be accomplished in author coreference, for example, by

querying a web search engine as follows. Clean and concatenate the titles of the

citations, issue this query and examine attributes of the returned hits. In this case, a

hit indicates the presence of a document on the web that mentions both these titles

and hence, some evidence that they are by the same author. Let fg be this new

boolean feature. This feature is then added to an augmented classifier that is then

used to determine edge weights.

In the second method, a new vertex can be obtained by querying the web in a

similar fashion, but creating a new vertex by using one of the returned web pages

as a new mention. Various features f(·) will measure compatibility between the

other “citation mentions” and the new “web mention,” and with similarly estimated

parameters λ, edge weights to the rest of the graph can be set.

In this case, we expand the graph G0, by adding a new set of vertices, V1 and

the corresponding new set of edges, E1 to create a new, fully connected graph, G′.

Although we are not interested in partitioning V1, we hypothesize that partitioning

G′ would improve the optimization of F on G0. This can be explained as follows.

Let v1, v2εV0, v3εV 1, and the edge < v1, v2 > has an incorrect, but high negative edge

weight. However, the edges < v1, v3 > and < v2, v3 > have high positive edge weights.

Then, by transitivity, partitioning the graph G′ will force v1 and v2 to be in the same

subgraph and improve the optimization of F on G0.
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(A)..., H. Wang, ... Background Initialization..., ICCV,...2005.

(B)..., H. Wang, ... Tracking and Segmenting People..., ICIP, 2005.

(C)..., H. Wang, ... Gaussian Background Modeling..., ICASSP, 2005.

(D)..., H. Wang, ... Facial Expression Decomposition..., ICCV, 2003.

(E)..., H. Wang, ... Tensor Approximation..., SIGGRAPH. 2005.

(F)..., H. Wang, ... High Speed Machining..., ASME, (JMSE), 2005.

Figure 3.1. Six Example References

As an example, consider the references shown in Fig.3.1. Let us assume that based

on the evidence present in the citations, we are fairly certain that the citations A,

B and C are by H. Wang 1 and that the citations E and F are by H. Wang 2. Let

us say we now need to determine the authorship of citation D. We now add a set

of additional mentions from the web, {1, 2, .. 10}. The adjacency matrix of this

expanded graph is shown in Fig.3.2. The darkness of the circle represents the level

of affinity between two mentions. Let us assume that the web mention 1 (e.g. the

web page of H. Wang 1) is found to have strong affinity to the mentions D, E and F.

Therefore, by transitivity, we can conclude that mention D belongs to the group 2.

Similarly, values in the lower right region could also help disambiguate the mentions

through double transitivity.

Figure 3.2. Extending a pairwise similarity matrix with additional web mentions.
A..F are citations and 1..10 are web mentions.
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3.5 Resource-bounded Web Usage

We now consider the scenario in which we have a limitation on the resources

required to issue queries for all the edges in the fully connected coreference graph

and process all the documents obtained as a result of these queries. The two cases to

consider are selecting a subset of queries to issue and selecting a subset of nodes to

add to the graph.

3.5.1 Selecting a Subset of Queries

Under the constraint on resources, we must select only a subset of edges in E0,

for which we can obtain the corresponding piece of information ii. Let Es ⊂ E0, be

this set and Is be the subset of information obtained that corresponds to each of the

elements in Es. The size of Es is determined by the amount of resources available.

Our objective is to find the subset Es that will optimize the function F on graph G0

after obtaining Is and applying graph partitioning.

Similarly, in the case of expanded graph G′, given the constraint on resources, we

must select V ′s ⊂ V1, to add to the graph. Note that in the context of information

gathering from the web, |V1| is in the billions. Even in the case when |V1| is much

smaller, we may choose to calculate the edge weights for only a subset of E1. Let

E ′s ⊂ E1 be this set. The sizes of V ′s and E ′s are determined by the amount of re-

sources available. Our objective is to find the subsets V ′s and E ′s that will optimize

the function F on graph G0 by applying graph partitioning on the expanded graph.

We now present the procedure for the selection of Es.

3.5.1.1 Centroid Based Resource-bounded Information Gathering

For each cluster of vertices that have been assigned the same label under a given

partitioning, we define the centroid as the vertex vc with the largest sum of weights

to other members in its cluster. Denote the subset of vertex centroids obtained from

30



clusters as Vc. We can also optionally pick multiple centroids from each cluster.

We begin with graph G0 obtained from the base features of the classifier. We use

the following criteria for finding the best order of issuing queries: expected entropy,

gravitational force, uncertainty-based and random. Random criteria selects one of

the candidate edge randomly at each step. The uncertainty criteria selects an edge

based on the entropy of the binary classifier. For each of these criteria, we follow the

procedure described below:

1. Partition graph G0 using N-run stochastic sampling.

2. From the highest scoring partitioned graph G∗i , find the subset of vertex cen-

troids Vc

3. Construct Es as the set of all edges connecting centroids in Vc.

4. Order edges Es into index list I based on the criteria.

5. Using index list I, for each edge ei ⊂ Es

(a) Execute the web query and evaluate additional features from result

(b) Evaluate classifier for edge ei with the additional features and form graph

Gi from graph Gi−1

(c) Using graph Gi, perform N-run stochastic sampling and compute perfor-

mance measures

3.5.1.2 Expected Entropy Criterion

1. Force merge of the vertex pair of ei to get a graph Gp

2. Peform N-run stochastic sampling on Gp. This gives the probabilities pi for

each of the edges in Gp
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3. Calculate the entropy, Hp of the graph Gp as follows:

Hp = −∑i Pi logPi

4. Force split of the vertex pair of ei to get a graph Gn

5. Repeat steps 2-3 to calculate entropy, Hn for graph Gn

6. The expected entropy, Hi for the edge ei is calculated as: Hi = (Hp)+(Hn)
2

(Assuming equal probabilities for both outcomes)

3.5.1.3 Gravitational Force Criterion

This selection criteria is inspired by the inverse squared law of the gravitational

force between two bodies. It is defined as F = ΓM1∗M2

d2
, where Γ is a constant, M1

and M2 are analogous to masses of two bodies and d is the distance between them.

This criteria ranks highly partitions that are near each other and large, and thus high-

impact candidates for merging. Let vj and vk be the two vertices connected by ei. Let

Cj and Ck be their corresponding clusters. We calculate the value of F as described

above, where M1 and M2 are the number of vertices in Cj and Ck respectively. We

define d = 1
xwi

, where wi is the weight on the edge ei and x is a parameter that we

tune for our method.

3.5.2 Selecting Nodes : RBIG as Set-cover

Incorporating additional nodes in the graph can be expensive. There can be some

features between a citation and a web mention (c2w) with high computational cost.

Furthermore, the running time of most graph partitioning algorithms depend on the

number of nodes in the graph. Hence, instead of adding all the web mentions gathered

by pairwise queries, computing the corresponding edge weights and partitioning the

resulting graph, it is desirable to find a minimal subset of the web documents that

would help bring most of the coreferent citations together. This is equivalent to

selectively filling the entries of the upper right section of the matrix. We observe that
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this problem is similar to the classic Set-cover problem with some differences as noted

below.

The standard Set-cover problem is defined as follows. Given a finite set U and

a collection C = {S1, S2, ....., Sm} of subsets of U . Find a minimum sized cover

C ′ ⊆ C such that every element of U is contained in at least one element of C ′. It is

known that greedy approach provides an Ω(ln n) approximation to this NP-Complete

problem.

We now cast the problem of Resource-bounded information gathering using addi-

tional web mentions as a variant of Set-cover. The goal is to “cover” all the citations

using the least possible number of web pages, where “cover” is loosely defined by some

heuristic. Assuming a simplistic, “pure” model of the web (i.e. each web page “cov-

ers” citations of only one author), we can think of each web page as a set of citations

and the set of citations by each author as the set of elements to be covered. We now

need to choose a minimal set of web pages such that they can provide information

about most of the citations in the data.

There are some differences between Set-cover and our problem that reflect the real

life scenario as follows. There can be some elements in U which are not covered by

any elements in C. That is,
⋃
Si 6= U . Also, in order for the additional web page to

be useful for improving coreference accuracy in the absence of a strong w2w classifier,

it has to cover at least two elements. Keeping these conditions in mind, we modify

the greedy solution to Set-cover as shown in Algorithm 1.

3.5.3 Selecting Queries: Inter-cluster and Intra-cluster queries

In many scenarios, issuing queries and obtaining the results is itself an expensive

task. In our previous methods, we used all possible pairwise queries to obtain addi-

tional web documents. In this section, we will use the information available in the

33



Algorithm 1 RBIG-Set-cover Algorithm
1: Input:

Set of citations U
Collection of web documents C : {S1, S2, ..., Sn}

2: O ⇐ ∅
3: while U is “coverable” by C do
4: Sk ⇐ argmaxSi∈C |Si|
5: O ⇐ O ∪ {Sk}
6: U ⇐ U ∩ Sk
7: C ⇐ {Si|Si = Si ∩ Sk}
8: end while
9: return O

U is “coverable” by C ≡ ∃(e∈U∧Si∈C )(e ∈ Si)

test data (upper left section of the matrix) to selectively issue queries, such that the

results of those queries would have most impact on the accuracy of coreference.

The first method for reducing the number of web queries is to query only a subset

of the edges between current partitions. We start by running the citation-to-citation

classifier on the test data and obtain some initial partitioning. For each cluster of

vertices that have been assigned the same label under a given partitioning, we define

the centroid as the vertex with the largest sum of weights to other members in its

cluster. We connect all the centroids with each other and get a collection of queries,

which are then used for querying the web. Let n be the number of citations in the

data and m be the number of currently predicted authors. Assuming that the baseline

features provide some coreference information, we have reduced the number of queries

to be executed from O(n2) to O(m2). A variation of this method picks multiple

centroids, proportional to the size of each initial partition, where the proportion can

be dictated by the amount of resources available.

The second method for reducing the number of web queries is to query only a

subset of the edges within current partitions. As before, we first start by running the

citation-to-citation classifier on the test data and then obtain some initial partitioning.

For each initial partition, we select two most tightly connected citations to form a
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query. Under the same assumptions stated above, we have now reduced the number

of queries to be executed from O(n2) to O(m). A variation of this method picks more

than two citations in each partition, including some random picks.

Figure 3.3. Inter-cluster and Intra-cluster queries

Both these approaches are useful in different ways. Inter-cluster queries help

find evidence that two clusters should be merged, whereas intra-cluster queries help

find additional information about a hypothesized entity. The efficiency of these two

methods depend on the number of underlying real entities as well as the quality of

initial partitioning.

3.5.4 Hybrid Approach

For large scale system, we can imagine combining the two approaches, i.e. Se-

lecting Nodes and Selecting Queries to form a hybrid approach. For example, we

can first select queries using, say intra-cluster queries to obtain additional mentions.

This would help reduce querying cost. We can then reduce the computation cost

by selecting a subset of the web mentions using the Set-cover method. We show

experimentally in the next section that this can lead to a very effective strategy.

3.5.5 Cost-Benefit Analysis

It should be noted that the choice of strategy for Resource-bounded information

gathering in the case of expanded graph should be governed by a careful Cost-Benefit

analysis of various parameters of the system. For example, if the cost of computing

correct edge weights using fancy features on the additional mentions is high, or if
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we are employing a graph partitioning technique that is heavily dependent on the

number of nodes in the graph, then the Set-cover method described above would be

effective in reducing the cost. On the other hand, if the cost of making a query and

obtaining additional nodes is high, then using inter-cluster or intra-cluster methods

is more desirable. For a large scale system, a hybrid of these methods could be more

suitable.

3.6 Experimental Results

3.6.1 Dataset and Infrastructure

We use the Google API for searching the web. The data sets used for these

experiments are a collection of hand labeled citations from the DBLP and Rexa

corpora (see table 3.1 ). The portion of DBLP data, which is labeled at Pennstate

University is referred to as ‘Penn’. Each dataset refers to the citations authored by

people with the same last name and first initial. The hand labeling process involved

carefully segregating these into subsets where each subset represents papers written

by a single real author.

The ‘Rbig’ corpus consists of a collection of web documents which is created as

follows. For every dataset in the DBLP corpus, we generate a pair of titles and issue

queries to Google. Then, we save the top five results and label them to correspond

with the authors in the original corpus. The number of pairs in this case corresponds

to the sum of the products of the number of web documents and citations in each

dataset.

All the corpora are split into training and test sets roughly based on the total

number of citations in the datasets. We keep the individual datasets intact because

it would not be possible to test graph partitioning performance on randomly split

citation pairs.

36



Corpus # Sets # Authors # Citations # Pairs
DBLP 18 103 945 43338
Rexa 8 289 1459 207379
Penn 7 139 2021 455155
Rbig 18 103 1360 126205

Table 3.1. Summary of Data set properties.

3.6.2 Baseline, Graph Partitioning, and Web Information as a Feature

The maximum entropy classifier for calculating the edge weights is built using the

following features. We use the first and middle names of the author in question and

the number of overlapping co-authors. The US census data helps us determine how

rare the last name of the author is. We use several different similarity measures on

the titles of the two citations, such as, the cosine similarity between the words, string

edit distance, TF-IDF measure and the number of overlapping bigrams and trigrams.

We also look for similarity in author emails, institution affiliation and the venue of

publication if available. We use a greedy agglomerative graph partitioner in this set

of experiments.

The baseline column in table 3.4 shows the performance of this classifier. Note

that there is a large number of negative examples in this dataset and hence we prefer

pairwise F1 over accuracy as the main evaluation metric. Table 2 shows that graph

partitioning significantly improves pairwise F1. We also use area under the ROC

curve for comparing the performance of the pairwise classifier, with and without the

web feature.

Note that these are some of the best results in author coreference and hence qualify

as a good baseline for our experiments with the use of web. It is difficult to make

direct comparison with other coreference schemes [36] due to the difference in the

evaluation metrics.

Table 3.4 compares the performance of our model in the absence and in the pres-

ence of the Google title feature. As described before, these are two completely identi-
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Method AROC Acc Pr Rec F1

Baseline class. .847 .770 .926 .524 .669
DBLP part. - .780 .814 .683 .743
W/ Google class. .913 .883 .907 .821 .862
DBLP part. - .905 .949 .830 .886

Baseline class. .866 .837 .732 .651 .689
Rexa part. - .829 .634 .913 .748
W/ Google class. .910 .865 .751 .768 .759
Rexa part. - .877 .701 .972 .814

Baseline class. .688 .838 .980 .179 .303
Penn part. - .837 .835 .211 .337
W/ Google class. .880 .913 .855 .672 .752
Penn part. - .918 .945 .617 .747

Figure 3.4. Effect of using the Google feature. Top row in each corpus indicates
results for pairwise classification and bottom row indicates results after graph parti-
tioning.

cal models, with the difference of just one feature. The F1 values improve significantly

after adding this feature and applying graph partitioning.

3.6.3 Expanding the Graph by Adding Web Mentions

In this case, we augment the citation graph by adding documents obtained from

the web. We build three different kinds of pairwise classifiers to fill the entries of

the matrix shown in fig. 3.2. The first classifier, between two citations, is the same

as the one described in the previous section. The second classifier, between a cita-

tion and a web mention, predicts whether they both refer to the same real author.

The features for this second classifier include: occurrence of the citation’s author and

coauthor names, title words, bigrams and trigrams in the web page. The third clas-

sifier, between two web mentions, predicts if they both refer to the same real author

or not. Due to the sparsity of training data available at this time, we set the value

of zero in this region of the matrix, indicating no preference. We now run the greedy
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agglomerative graph partitioner on this larger matrix and finally, measure the results

on the upper left matrix.

We compare the effects of using web as a feature and web as a mention on the

DBLP corpus. We use the Rbig corpus for this experiment. Table 3.2 shows that

the use of web as a mention improves the performance on F1. Note that alternative

query schemes may yield better results.

Data Acc. Pr. Rec. F1
Baseline .7800 .8143 .6825 .7426
Web Feature .9048 .9494 .8300 .8857
Web Mention .8816 .8634 .9462 .9029

Table 3.2. DBLP Results when using Web Pages as Extra Mentions

3.6.4 Applying the Resource Bounded Criteria for Selective Querying

We now turn to the experiments that use different criteria for selectively query-

ing the web. We present the results on test datasets from DBLP and Rexa corpora.

As described in the previous section, the query candidates are the edges connecting

centroids of initial clustering. We use multiple centroids and pick top 20% tightly con-

nected vertices in each cluster. We experiment with ordering these query candidates

according to the four criteria: expected entropy, gravitational force, uncertainty-based

and random. For each of the queries in the proposed order, we issue a query to Google

and incorporate the result into the binary classifier with an additional feature.

If the prediction from this classifier is greater than a threshold (t = 0.5), we force

merge the two nodes together. If lower, we have two choices. We can impose the force

split, in accordance with the definition of expected entropy. We call this approach

“split and merge”. The second choice is to not impose the force split, because, in

practice, Google is not an oracle and absence of co-occurence of two citations on the

web is not an evidence that they refer to different people. We call this approach
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Method Precision Recall F1
Merge Only
Expected Entropy 73.72 87.92 72.37
Gravitational Force 63.10 92.37 64.55
Uncertainty 64.95 87.83 63.54
Random 63.97 89.46 64.23
Merge and Split
Expected Entropy 76.19 58.56 60.90
Gravitational Force 64.10 53.06 53.56
Uncertainty 66.56 54.45 55.32
Random 66.45 50.47 52.27
No Merge
Expected Entropy 91.46 38.46 51.06
Gravitational Force 91.53 37.84 50.47
Uncertainty 87.01 41.91 52.70
Random 86.96 43.77 54.03

Table 3.3. Area Under Curve for different Resource Bounded Information Gathering
criteria

“merge only”. The third choice, is to simply incorporate the result of the query into

the edge weight.

After each query, we rerun the stochastic partitioner and note the precision, recall

and F1. This gives us a plot for a single dataset. Note that the number of proposed

queries in each dataset is different. We get an average plot by sampling the result

of each of the datasets for a fixed number of points, n (n = 100). We interpolate

when queries fewer than n are proposed. We then average across these datsets and

calculate the area under these curves, as shown in table 3.3.

These curves measure the effectiveness of a criteria in achieving maximum possible

benefit with least effort. Hence, a curve that rises the fastest, and has the maximum

area under the curve is most desired. Expected entropy approach, gives the best

performance on F1 measure, as expected.

It is interesting to note that the gravitational-force-based criteria does better than

the expected entropy criteria on recall, but worse on the precision. We hypothesize
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that this is because gravitational approach captures the sizes of the two clusters and

hence tends to merge large clusters, without paying much attention to the ‘purity’

of the resulting clusters. The expected entropy approach, on the other hand, takes

this into account and hence emerges as the best method. In the future, we would like

to verify this hypothesis experimentally. The force-based approach is a much faster

approach and it can be used as a heuristic for very large datasets.

Both the criteria work better than uncertainty-based and random, except an oc-

casional spike. All four methods are sensitive to the noise in data labeling, result

of the web queries and sampling in stochastic graph partitioning, as reflected by the

spikes in the curves. However, these results show that expected entropy approach is

the best way to achieve maximum returns on investment and proves to be a promising

approach to solve this class of problems, in general.

3.6.5 Resource Bounded Querying for Additional Web Mentions: Intra-

Setcover Hybrid Approach

Finally, we present the results of the hybrid approach on the DBLP corpus. In

Fig.3.5, the black series plots the ratio of the number of documents added to the

graph in each method to the number of documents obtained by all pairwise queries.

This represents cost. The gray series plots the ratio of the improvement obtained

by each method to the maximum achievable improvement (using all mentions and

queries). This represents benefit. For the Intra-Setcover hybrid approach, we achieve

74.3% of the total improvement using only 18.3% of all additional mentions.

3.7 Open Theoretical Problem

The problem of Resource-bounded information gathering for entity resolution ex-

tends to a much larger class of interesting problems. We propose this as an open

theoretical problem.
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Figure 3.5. DBLP: For each method, fraction of the documents obtained using
all pairwise queries and fraction of the possible performance improvement obtained.
Intra-Setcover hybrid approach yields the best cost-benefit ratio

The standard correlation clustering problem on a graph with real-valued edge

weights is as follows: there exists a fully connected graph G(V,E) with n nodes and

edge weights, wij ∈ [−1,+1]. The goal is to partition the vertices in V by minimizing

the inconsistencies with the edge weights [5]. That is, we want to find a partitioning

that maximizes the objective function F =
∑
ij wijf(i, j), where f(i, j) = 1 when vi

and vj are in the same partition and −1 otherwise.

Now consider a case in which there exists some “true” partitioning P , and the edge

weights wij ∈ [−∞,+∞] are drawn from a random distribution (noise model) that

is correlated with whether or not edge eij ∈ E is cut by a partition boundary. The

goal is to find an approximate partitioning, Pa, of V into an unknown number of k

partitions, such that Pa is as ‘close’ to P as possible. There are many different possible

measures of closeness to choose from. Let L(P ,Pa) be some arbitrary loss function.

If no additional information is available, then we could simply find a partitioning that

optimizes F on the given weights.

We consider settings in which we may issue queries for additional information to

help us reduce loss L. Let G0(V0, E0) be the original graph. Let F0 be the objective

function defined over G0. Our goal is to perform correlation clustering and optimize
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(a) G0 (b) Result of Q1 (c) Result of Q2

Figure 3.6. Results of the two kinds of queries. (a) The adjacency matrix of G0 where
darker circles represent edges with higher weight. (b) The new edge weights w′ij after issuing
the queries from Q1. (c) The graph expanded after issuing queries from Q2. The upper left
corner of the matrix corresponds to G0 and the remaining rows and columns correspond to
the nodes in V1.

F0 with respect to the true partitioning of G0. We can augment the graph with

additional information using two alternative methods: (1) updating the weight on an

existing edge, (2) adding a new vertex and edges connecting it to existing vertices.

We can obtain this additional information by querying a (possibly adversarial) oracle

using two different types of queries. In the first method, we use query of type Q1,

which takes as input edge eij and returns a new edge weight w′ij, where w′ij is drawn

from a different distribution that has higher correlation with the true partitioning P .

In the second method, we can expand the graphG0, by adding a new set of vertices,

V1 and the corresponding new set of edges, E1 to create a larger, fully connected

graph, G′. Although we are not interested in partitioning V1, we hypothesize that

partitioning G′ would improve the optimization of F′ on G0 due to transitivity of

partition membership. In this case, given resource constraints, we must select V ′s ⊂ V1

to add to the graph. These can be obtained by second type of query, Q2, which

takes as input (V0, E0) and returns a subset V ′s ⊂ V1. Note that the additional nodes

obtained as a result of the queries of type Q2 help by inducing a new, and presumably

more accurate partitioning on the nodes of G0. Fig. 3.6 illustrates the result of these

queries. However, there exist many possible queries of type Q1 and Q2, each with an
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associated cost. There is also a cost for performing computation on the additional

information. Hence, we need an efficient way to select and order queries under the

given resource constraints.

Formally, we define the problem of resource-bounded information gathering for

correlation clustering as follows. Let c(q) be the cost associated with a query q ∈

Q1∪Q2. Let b be the total budget on queries and computation. Find distinct queries

q1, q2, .....qm ∈ Q1 ∪Q2 and Pa, to minimize L(P ,Pa), s.t.
∑
qi c(qi) ≤ b.

3.8 Chapter Summary

In this chapter, we learn that when acquiring information for a structured problem

(in this case, a graph partitioning one), it is preferable to reduce uncertainty in the

overall structure (graph), rather than focusing on reducing only local uncertainty.

In our example, we demonstrate that we can allocate resources more effectively, by

selecting an edge, such that improving the corresponding edge weight reduces the

expected entropy of the entire graph. In the future, it would be interesting to develop

a query selection criteria that adapts its decision based on the changes after acquiring

information, rather than ranking all the queries initially. We also show that additional

information can be incorporated in the form of additional nodes in the graph, which

can aid more accurate partitioning; an idea that can potentially be applied in many

interesting, real world domains.

To the best of my knowledge, our work is the first to propose acquisition of

external information for improving an entity resolution problem that is cast as a

graph partitioning problem, and demonstrating how to do it efficiently under limited

resources. We believe that this problem setting has the potential to bring together

ideas from the areas of active information acquisition, relational learning, decision

theory and graph theory, and apply them in real world domains. This work also leads

to interesting theoretical questions, whose answers can expand our understanding
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of how external information can be used efficiently to improve clustering problems.

Some interesting directions for this work are : analytically quantifying the effect of

changing a single edge weight on the partitioning of the entire graph; estimating the

probability of recovering the true partition under various query selection strategies

for general random graphs and possible directions for approximations; and general

techniques for selectively acquiring information for expanding graphs.
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CHAPTER 4

PREDICTION-TIME ACTIVE FEATURE-VALUE
ACQUISITION FOR CUSTOMER TARGETING

4.1 Introduction

In the previous chapter, we selected a subset of instances for which to obtain a

single feature value. We now focus on acquiring multiple feature values from external

sources such as the web or an information vendor. The previous chapter assumes

that the input instances are interdependent, which directly affects the criterion for

selecting query actions. In this chapter, we will develop the ideas for query selection

for the case of i.i.d. input instances. We do not focus on the download and extract

actions from the RBIA framework in Chapter 1, and assume that the information

from external source is available in processed form, after a query action is performed.

The db-inference in this case involves predicting the value of a target variable using all

available information. Once again, the db-inference impacts our methods for selecting

most effective query actions.

The cost-effective acquisition of data for modeling and prediction has been an

emerging area of study which, in the most general case, is referred to as Active

Information Acquisition [77]. We examine the specific case of this problem, where

a set of features maybe missing and all missing feature values can be acquired for

a selected instance[62]. This Instance-completion setting allows for computationally

cheap yet very effective heuristic approaches to feature-acquisition. It has been shown

that at train time, actively selecting feature values to acquire results in building

effective models at a lower cost than randomly acquiring features [63]. We now study
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prediction-time Active Feature-value Acquisition (AFA) in the context of different

customer targeting domains.

Our first domain is a system developed at IBM to help identify potential customers

and business partners. The system formerly used only structured firmographic data

to predict the propensity of a company to buy a product. Recently, it has been shown

that incorporating information from company websites can significantly improve these

targeting models. However, in practice, processing websites for millions of companies

is not desirable due to the processing costs and noisy web data. Hence we would

like to select only a subset of companies for which to acquire web-content, to add to

the firmographic data, to aid in prediction. This is a case of the Instance-completion

setting, in which firmographic features are available for all instances, and the web

features are missing and can be acquired at a cost. Instance-completion heuristics

have been applied to this data during induction [61]; and, here, we study the comple-

mentary task of prediction-time AFA. An interesting aspect observed in [61] is that

web content can also be noisy, and active-selection of web-content can often do better

than using all web-content. This shows that prediction-time AFA can also be used in

the context of data cleaning problems.

The second domain is a web-usage study by Zheng and Padmanabhan [98]. Their

data set contains information about web users and their visits to retail web sites.

The given features describe a visitor’s surfing behaviors at a particular site, and

the additional features, which can be purchased at a cost from an external vendor,

provides aggregated information about the same visitor’s surfing behavior on other

e-commerce sites. The target variable indicates whether or not the user made a

purchase during a given session. This setting also fits naturally in the Instance-

completion setting of AFA.

These domains exhibit a natural dichotomy of features, in which one set of fea-

tures is available for all instances, and the remaining features can be acquired, as a
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set, for selected instances. As such, these domains lend themselves to AFA in the

Instance-completion setting, and have been used in the past in studies of feature-

acquisition during induction [62]. At the time of induction, class labels are available

for all instances — including the incomplete instances. This information can be used

effectively to estimate the potential value of acquiring more information for the in-

complete instances. However, this label information is obviously not present during

prediction on test instances, and as such leads us to explore alternative acquisition

strategies. In particular, we explore methods to estimate the expected benefit of

acquiring additional features for an incomplete instance, versus making a prediction

using only incomplete feature information. Extensive experimental results confirm

that our approaches can effectively select instances for which it is beneficial to ac-

quire more information to classify them better, as compared to acquiring additional

information for the same number of randomly sampled instances.

4.2 General Problem Setup

Assume that we are given a classifier induced from a training set consisting of

n features and the class labels. We are also given a test set of m instances, where

each instance is represented with n feature values. This test set can be represented

by the matrix F , where Fi,j corresponds to the value of the jth feature of the ith

instance. The matrix F may initially be incomplete, i.e., it contains missing values.

At prediction time, we may acquire the value of Fi,j at the cost Ci,j. We use qi,j to

refer to the query for the value of Fi,j. The general task of prediction-time AFA is

the selection of these instance-feature queries that will result in the most accurate

prediction over the entire test set at the lowest cost.
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4.3 Prediction-time Active Feature-value Acquisition for Instance-

completion

As noted earlier, the generalized AFA setting has been studied previously for

induction-time. Under the induction-time AFA setting, the training instances have

missing features values, which can be acquired at a cost and the goal is to learn the

most accurate model with the lowest cost. This model is usually tested on a test-set

of complete instances. Here, we are interested in the complementary task of Active

Feature-value Acquisition at the time of prediction. The fundamental difference be-

tween these two settings is that for induction-time AFA, our goal is to learn a model

that would make most accurate predictions on a test set with complete instances,

whereas, for prediction-time AFA, the model is trained from a set of complete in-

stances, and the goal is to select queries that will lead to most accurate prediction on

incomplete test instances. A third scenario is when the feature values are missing at

both induction and prediction time, and the learner is aware of the cost constraints

at prediction-time. Hence, the goal of the learner is to learn the most accurate model

that optimizes cost at both train and test time. In future, we would like to explore

this third scenario.

Here, we consider a special case of the prediction-time AFA problem mentioned

above; where feature values for an instance may naturally be available in two sets —

one set of features is given for all instances, and the second set can be acquired from

an external source at a cost. The task is to select a subset of instances for which the

additional features should be acquired to achieve the best cost-benefit ratio.

The two sets of features can be combined in several ways to build a model (or

make a prediction at test time). The features from the two sets can be merged before

building a model, which is referred to as early fusion. Alternatively, two separate

models are built using the two sets of features and their outputs are combined in

some way to make the final prediction — known as late fusion. The alternative
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strategy we employ in our work is called Nesting [61] — in which we incorporate the

output of a model using the second set of additional features (inner model) as an

input to the model using the first set of given features (outer model). Specifically, we

add another feature in the outer model, corresponding to the predicted probability

score for the target variable, as given by the inner model.

The general framework for performing prediction-time AFA for instance-completion

setting is described in Algorithm 1. We assume that we are given two models, one

induced only from the given features and another one induced from both given and

additional features. At prediction time, we are given a set of incomplete instances.

We compute a score for each of the incomplete instances based on some acquisition

strategy. We sort all instances based on this score and acquire additional features in

the sorted order until some stopping criterion is met. The final prediction is made

using the appropriate model on the entire set of instances. Note that induction-time

AFA has a similar framework, but the main difference is that at induction-time, after

each batch of feature acquisition, we need to relearn the model, and hence, recompute

the score. On the other hand, at prediction-time, acquiring additional features for

one instance has no effect on the prediction of another instance, and as such we can

generate the score on the entire set once before starting the acquisition process. This

makes large scale, prediction-time AFA feasible on a variety of domains. Note that

if the prediction algorithm takes into account the values of multiple test instances,

our method can not be directly applied. In the next section we describe alternative

approaches to selecting instances for which to acquire additional feature values.

4.4 Acquisition Strategies

4.4.1 Uncertainty Sampling

The first AFA policy we explore is based on the uncertainty principle that has

been extensively applied in the traditional active learning literature [49], as well as
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Algorithm 2 Prediction-time AFA for Instance-completion using Nesting

Given:
I - Set of incomplete instances, which contain only given features
C - Set of complete instances, which contain both given and additional features
T - Set of instances for prediction, I ∧ C
Mg - Model induced from only given features
Mc - Model induced from both given and additional features

1: ∀xj ∈ I, compute the score S = Score(Mg, xj), based on the AFA strategy
2: Sort instances in I by score, S.
3: Repeat until stopping criterion is met
4: Let xj be the instance in I with the next highest score
5: Model M = Mg if xj ∈ I and M = Mc if xj ∈ C
6: return Predictions on T using the appropriate model M

previous work on AFA [62]. In Uncertainty Sampling we acquire more information

for a test instance if the current model cannot make a confident prediction of its class

membership. There are different ways in which one could measure uncertainty. In our

study, we use unlabeled margins [62] as our measure; which gives us the same ranking

of instances as entropy, in the case of binary classification. The unlabeled margin

captures the model’s ability to distinguish between instances of different classes. For

a probabilistic model, the absence of discriminative patterns in the data results in the

model assigning similar likelihoods for class membership of different classes. Hence,

the Uncertainty score is calculated as the absolute difference between the estimated

class probabilities of the two most likely classes. Formally, for an instance x, let Py(x)

be the estimated probability that x belongs to class y as predicted by the model. Then

the Uncertainty score is given by Py1(x) − Py2(x), where Py1(x) and Py2(x) are the

first-highest and second-highest predicted probability estimates respectively. Here,

a lower score for an instance corresponds to a higher expected benefit of acquiring

additional features.
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4.4.2 Expected Utility

Uncertainty Sampling , as described above, is a heuristic approach that prefers

acquiring additional information for instances that are currently not possible to clas-

sify with certainty. However, it is possible that additional information may still not

reduce the uncertainty of the selected instance. The decision theoretic alternative

is to measure the expected reduction in uncertainty for all possible outcomes of a

potential acquisition. According to an optimal strategy, the next best instance, for

which we should acquire features is the one that will result in the greatest reduction

in uncertainty per unit cost, in expectation. Since true values of missing features

are unknown prior to acquisition, it is necessary to estimate the potential impact of

every acquisition for all possible outcomes. Ideally, this requires exhaustively eval-

uating all possible combinations of values that the additional (missing) features can

take for each instance. However, in our Nesting approach to combining feature sets,

we reduce the additional features into a single score, which is used as a feature along

with the other given features. This allows us to dramatically simplify the complexity

of this approach, by only treating this score as a single missing feature, and estimat-

ing the utility of possible values it can take. Of course, calculating expectation over

this single score does not give us the true utility of the additional features, but it

makes the utility computation feasible, especially when we have a very large number

of additional features. As such, the expected utility can be computed as:

EU(qj) =
∫
x
U(Sj = x,Cj)P (Sj = x) (4.1)

Where, P (Sj = x) is the probability that Sj has the value x and U(Sj = x,Cj) is the

utility of knowing that Sj has value x. In other words, it is the benefit arising from

obtaining a specific value x for score Sj, at cost Cj. In practice, in order to compute

the expected utility, we discretize the values of S and replace the integration in Eq. 4.1

with piece-wise summation. The two terms, U and P in Eq. 4.1 must be estimated
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only from available data. We discuss how we empirically estimate these quantities

below.

Estimating utility: The utility measure, U , can be defined in one of several dif-

ferent ways. In the absence of class labels, we resort to using measures of uncertainty

of the model prediction as a proxy for prediction accuracy. One obvious choice here is

to measure the reduction in entropy of the classifier after obtaining value x — similar

to what is done in traditional active learning [75], i.e.,

U(Sj = x,Cj) = −H(X ∧ Sj = x)−H(X)

Cj
(4.2)

Where, H(X ∧ Sj = x) is the entropy of the classifier on the instance with features

X, augmented with Sj = x, H(X) is the entropy of the classifier on the instance with

features X and Cj is the cost of feature score Sj.

However, using reduction in entropy may not be ideal. We illustrate this through

Fig. 4.1, which compares entropy and unlabeled margins as a function of the predicted

class membership probability, p̂(y|x). Note that it does not matter which class y

we choose here. We see from the figure, that for the same ∆x difference in class

membership probability, the corresponding reductions in entropy are different. In

particular, the further we are from the decision boundary the higher the change in

entropy, i.e. ∆y2 > ∆y1. All else being equal, this measure would prefer acquisitions

that would reduce entropy further from the classification boundary; which is less likely

to affect the resulting classification. Alternatively, one could use unlabeled margins,

which is a linear function of the probability estimate on either side of the decision

boundary. This gives the following expected unlabeled margin utility measure:

U(Sj = x,Cj) =
UM(X ∧ Sj = x)− UM(X)

Cj
(4.3)

Where, UM(X) is the unlabeled margin as described in Sec. 4.4.1.
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Furthermore, one might choose to prefer a difference in p̂ closer to the decision

boundary; since this is more likely to result in an alternative classification for an

instance. We can capture this relationship, by using the log of the unlabeled margins,

which gives us the following expected log margin measure of utility:

U(Sj = x,Cj) =
ln(UM(X ∧ Sj = x))− ln(UM(X))

Cj
(4.4)

Figure 4.1. Comparison of unlabeled margin and entropy as measures of uncertainty.

Estimating feature-value distributions: Since the true distribution of the

score Sj is unknown, we estimate P (Sj = x) in Eq.1 using a probabilistic learner. We

start by dropping the class variables from the training instances. Next, we use a

model trained only on the additional features to predict the value of Sj and discretize

it. We now use Sj as the target variable and all given features as the predictors to

learn a classifier M . When evaluating the query qj, the classifier M is applied to

instance Xj to produce the estimate P̂ (Sj = x).
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4.5 Empirical evaluation

We tested our proposed feature-acquisition approaches on the following data sets.

Rational, comes from a system developed at IBM to help identify potential customers

and business partners. The remaining three data sets come from the web usage study

by Zheng and Padmanabhan [98].

Dataset Model using given features Composite model

bmg 77.41 88.11
expedia 87.07 94.53

qvc 81.04 88.94

Table 4.1. Improvement in Accuracy after using additional features. The AUC value
for Rational dataset, goes from 79.0 to 82.3 after acquiring additional features.

4.5.1 Comparison of acquisition strategies

For all datasets, we use Nesting to combine the two separate feature sets. We

experimented with different combinations of base classifiers in Nesting, and found

that using decision trees for the additional features and logistic regression for the

composite model is most effective for the web-usage datasets. For Rational, we use

multinomial naive Bayes for the web features, and logistic regression for the composite

model. Since there is a small proportion of instances from the target class in Rational,

and it is a ranking problem, we use AUC instead of accuracy as a performance metric

(as done in [61]). For all other datasets, we use accuracy as done in their previous

usage [98].

Table 4.1 shows improvement in accuracy of the classification model after acquiring

additional features. In all four experiments, the models using the additional features

performed statistically significantly better than the models on given features alone,

based on paired t-tests (p < 0.05).

55



We ran experiments to compare Random Sampling and the AFA strategies de-

scribed in Sec. 4.4. The performance of each method was averaged over 10 runs of

10-fold cross-validation. In each fold, we generated acquisition curves as follows. Af-

ter acquiring additional features for each actively-selected test instance, we measure

accuracy (or AUC, in case of Rational) on the entire test set using the appropriate

model (see Algorithm 1). In the case of Random Sampling, instances are selected

uniformly at random from the pool of incomplete instances. For the expected utility

approaches described in Sec. 4.4.2, we used 10 equal-width bins for the discretization

of the score Sj in Eq. 4.1.

Fig. 4.2 shows the effectiveness of each strategy in ordering the instances so as

to get the most benefit with the least cost of data acquisition. We assume, for these

experiments, that there is a unit cost of acquiring additional features for each instance.

In all cases, active acquisition clearly out-performs Random Sampling, resulting in

improved prediction performance for the same amount of feature information acquired

for the test instances. Also, a large amount of improvement in accuracy is achieved by

acquiring complete feature sets for only a small fraction of instances, which suggests

that it is not critical to have complete feature information for all instances to correctly

classify them.

In the web usage datasets, unlabeled margin does better than all other measures of

uncertainty. Also, note that expected log margin performs slightly better than other

utility measures. It is interesting to note that the prediction on one instance is com-

pletely independent of the acquisition of additional feature on another instance. This

is one reason why unlabeled margin proves to be an effective method for prediction-

time AFA in most cases.
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Figure 4.2. Comparison of acquisition strategies

4.5.2 Oracle study and discussion

Even with the gross approximations and estimations done in Sec. 4.4.2, the Ex-

pected Utility approach still manages to perform quite well compared to random

sampling. Furthermore, using reduction in log margins tends to slightly outperform

the alternative utility measures, for the reasons discussed in Sec. 4.4.2. However, in

general, the Expected Utility methods still do not exceed the performance of Uncer-

tainty Sampling , as one would expect. It is possible that the estimations done in the

computation of Expected Utility are too crude and need to be improved. One source

of improvement could be through better estimation of the probability distribution of

missing feature values. Currently this is being reduced to estimating the probability

of a single discretized score, representing the output of a model built using the addi-
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Figure 4.3. Comparison of acquisition strategies using an Oracle

tional features. In order to evaluate the room for improvement in this estimation, we

use the true value of the discretized score while calculating the expectation in Eq. 4.1.

This Expected Log Margins with Oracle approach is shown in Fig. 4.3, in comparison

to the estimated Expected Log Margins approach. We see that, indeed, if we had

the true probability estimate P (Sj = x), we can perform much better than using the

estimation approach described in Sec. 4.4.2. However, this by itself is still insufficient

to outperform Uncertainty Sampling . We may be losing too much information by

compressing the additional feature set into a single score. Using alternative feature-

reduction techniques may lead to a more meaningful estimation of the missing value

distribution, without too much increase in computational complexity brought about

by having to estimate the joint distribution of features. Perhaps a better estimate of

utility U is also required to make the Expected Utility approach more effective.

In summary, we demonstrate that our approaches of measuring the uncertainty

of predictions, and the expected reduction of uncertainty through additional feature-

acquisition, are much more effective than the baseline approach of uniformly sampling

instances for acquiring more information. Empirical results show that estimating the
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expected reduction in uncertainty of a prediction is an effective acquisition strategy.

However, it is not as effective as just selecting instances based on the uncertainty of

their prediction using incomplete information.

4.6 Chapter Summary

In this chapter, we apply various instance selection criteria for query actions that

help acquire additional features at test time for a classification problem. We can

select an instance that is most uncertain, as predicted by existing features, such that

new features would lead to a more certain classification. Alternatively, we can select

an instance for which the new features will reduce uncertainty in expectation. We

show how to address the problem of unavailability of class labels at test time for

computing the value of obtaining additional information for an incomplete instance

and study the effectiveness of these methods on customer targeting applications.
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CHAPTER 5

RESOURCE-BOUNDED INFORMATION EXTRACTION
USING INFORMATION PROPAGATION

5.1 Introduction

The goal of traditional information extraction is to accurately extract as many

fields or records as possible from a collection of unstructured or semi-structured text

documents. In this scenario, we assume that we already have a partial database and

we need only fill in its holes. In this chapter, we propose methods for finding spe-

cific information in a large collection of external documents, and doing so efficiently

with limited computational resources. For instance, this small piece of information

may be a missing record, or a missing field in a database that would be acquired by

searching a very large collection of documents, such as the Web. Using traditional

models of information extraction for this task is wasteful, and in most cases computa-

tionally intractable. A more feasible approach for obtaining the required information

is to automatically issue appropriate queries to the external source, select a subset

of the retrieved documents for processing and then extract the specified field in a

focussed and efficient manner. We can further enhance the efficiency of our system

by exploiting the inherent relational nature of the database. We call this process

of searching and extracting for specific pieces of information, on demand, Resource-

bounded Information Extraction (RBIE). In this chapter, we present the design of

an early framework for Resource-bounded Information Extraction, discuss various

important design choices involved and present some experimental results.

Consider a database of scientific publication citations, such as Rexa, Citeseer or

Google Scholar. The database is created by crawling the web, downloading papers,

60



extracting citations from the bibliographies and then processing them by tagging and

normalizing. In addition, the information from the paper header is also extracted.

In order to make these citations and papers useful to the users, it is important to

have the year of publication information available. Even after integrating the citation

information with other publicly available databases, such as DBLP, a large fraction of

the papers do not have a year of publication associated with them. This is because,

often, the headers or the full text of the papers do not contain the date and venue of

publication (especially for preprints available on the web). Approximately one third

of the papers in Rexa are missing the year of publication field. Our goal is to fill in

the missing years by extracting them from the web.

Note that, in the setting described above, we are often not interested in obtaining

the complete records on the database, but in just filling in the missing values. Also,

the corpus of documents, such as the web, is extremely large. Moreover, in most real

scenarios, we must work under pre-specified resource constraints. Any method that

aims to extract required information in the described setting must be designed to

work under the given resource constraints. Hence, this is a good example of an RBIE

problem.

Many of these databases are relational in nature, for example, obtaining the value

of one field may provide useful information about the remaining fields. Similarly, if the

records are part of a network structure with uncertain or missing values, as in the case

of the citation network in our example task, then information obtained for one node

can reduce uncertainty in the entire network. We show that exploiting these kinds

of dependencies can reduce the amount of resources required to complete the task

significantly. The db-inference action in this case involves propagating information

obtained from the external source through the graph, so as to reduce uncertainty

about the values of each entry.
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5.2 General Problem Setup

The previous two chapters primarily focused on selecting query actions of the

RBIA framework in Chapter 1, and how it is influenced by db-inference. We now

expand our focus on other aspects of the framework, by also incorporating download

and extract actions. Note that RBIE is again, an instantiation of the general RBIA

framework, in that the external information to be acquired is embedded in semi-

structured or unstructured documents, and must be extracted before use. We now

present a general problem setup for which the methods proposed in this chapter may

be applicable.

Let DB be a database with a set of instances I. Let Xe be the set of fields with

existing values, and xm be a field with missing values, which we want to acquire. We

assume that the values in Xe can be used as an input for issuing queries to an external

information source, such as the Web, that potentially contains the missing values

for xm. We assume that we have a probabilistic model for extracting values of xm

from semi-structured or unstructured documents obtained from the external source.

Finally, we assume that there exists a temporal partial order over all the instances in

I, imposed by the values of xm. This last assumption is exploited by the information

propagation methods in this chapter for reducing the amount of resources required for

information acquisition. Note that the methods for information propagation proposed

in this chapter are specifically designed for the case of temporal partial order, and

may not work for a general graph structure. Extending these ideas for a general

directed or undirected graph structure is part of our future work.

5.3 System Architecture

We need a new framework for performing information extraction to automatically

acquire specific pieces of information from a very large corpus of unstructured doc-

uments. Fig. 5.1 shows a top-level architecture of our proposed framework. This is
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Figure 5.1. General Framework for Resource-bounded Information Extraction

an early framework used for an RBIE task, and even though it is fairly general in

terms of the components of such as system, it does not provide a general method

for selecting actions. In the next chapter, we will see further generalization of our

framework.

In this section, we discuss the general ideas for designing a resource-bounded

information extraction system. Each of these modules may be adapted to suit the

needs of a specific application, as we shall see for our example task.

We start with a database containing missing values. In general, the missing infor-

mation can either be a complete record, or values of a subset of the features for all

records, or a subset of the records. We may also have uncertainty over the existing fea-

ture values that can be reduced by integrating external information. We assume that

the external corpus provides a search interface that can be accessed automatically,

such as a search engine API.

The information already available in the database is used as an input to the Query

Engine. The basic function of the query engine is to automatically formulate queries,

prioritize them optimally, and issue them to a search interface. The documents re-

turned by the search interface are then passed on to the Document Filter. Document
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Filter removes documents that are not relevant to the original database and ranks

the remaining documents according to the usefulness of each document in extracting

the required information.

A machine learning based information extraction system extracts relevant fea-

tures from the documents obtained from the Document Filter, and combines them

with the features obtained from the original database. Hence, information from the

original database and the external source is now merged, to build a new model that

predicts the values of missing fields. In general, we may have resource constraints

at both training and test times. In the training phase, the learned model is passed

to the Confidence Evaluation System, which evaluates the effectiveness of the model

learned so far and recommends obtaining more documents through Document Filter,

or issuing more queries through the Query Engine in order to improve the model.

In the test phase, the prediction made by the learned model is tested by the Con-

fidence Evaluation System. If the model’s confidence in the predicted value crosses

a threshold, then it is used to fill (or to replace a less certain value) in the original

database. Otherwise, the Confidence Evaluation System requests a new document or

a new query to improve the current prediction. This loop is continued until either

all the required information is satisfactorily obtained, or we run out of a required

resource. Additionally, feedback loops can be designed to help improve performance

of Query Engine and Document Filter.

This gives a general overview of the proposed architecture. We now turn to a more

detailed description for each module, along with the many design choices involved

while designing a system for our specific task.

We present a concrete resource-bounded information extraction task and a prob-

abilistic approach to instantiate the framework described above: We are given a set

of citations with fields, such as, paper title, author names, contact information avail-

able, but missing year of publication. The goal is to search the web and extract
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this information from web documents to fill in the missing year values. We evaluate

the performance of our system by measuring the precision, recall and F1 values at

different confidence levels. The following sections describe the architecture of our

prototype system, along with possible future extensions.

5.3.1 Query Engine

The first step in the information acquisition process is requesting the external

information, or the location thereof. The basic function of query engine is to au-

tomatically formulate queries, prioritize them optimally, and issue them to a search

interface. There are three modules of query engine. The available resources may allow

us to acquire the values for only a subset of the fields, for a subset of the records.

Input selection module decides which feature values should be acquired from the ex-

ternal source to optimize the overall utility of the database. The query formulation

module combines input values selected from the database with some domain knowl-

edge, and automatically formulates queries. For instance, a subset of the available

fields in the record, combined with a few keywords provided by the user, can form

useful queries. Out of these queries, some queries are more successful than others in

obtaining the required information. Query ranking module ranks the queries in an

optimal order, requiring fewer queries to obtain the missing values. In the future,

we would like to explore sophisticated query ranking methods, based on the feedback

from other components of the system.

In our system, we use existing fields of the citation, such as paper title and names

of author, and combine them with keywords such as “cv”, “publication list”, etc. to

formulate the queries. We experiment with the order in which we select citations to

query. In one method, the nodes with most incoming and outgoing citation links are

queried first. We issue these queries to a search API and the top n hits (where n

depends on the available resources) are obtained.
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5.3.2 Document Filter

Even though queries are formed using the fields in the database, some documents

may be irrelevant. This may be due to the ambiguities in the data (e.g. person name

coreference), or simply imperfections in the retrieval engine. We need a mechanism to

remove such irrelevant documents. The primary function of the document filter is to

remove irrelevant documents and prioritize the remaining documents for processing.

Following are the two main components of the Document Filter. Initial filter removes

documents which are irrelevant to the original database. The remaining documents

are then ranked by document ranker, based on their relevance to the original database.

Remember that the relevance used by the search interface is with respect to the

queries, which may not necessarily be the same as the relevance with respect to the

original database. In the future, we would like to learn a ranking model, based on the

feedback from the information extraction module (via Confidence Evaluation System)

about how useful the document was in making the actual prediction.

In our system, many of the documents returned by the search engine are not

relevant to the original citation record. For example, a query with an author name

and keyword “resume” may return resumes of different people sharing a name with

the paper author. Hence, even though these documents are relevant to an otherwise

useful query, they are irrelevant to the original citation. Sometimes, the returned

document does not contain any year information. The document filter recognizes

these cases by looking for year information and soft matching the title with body of

the document.

5.3.3 Probabilistic prediction model for Information Extraction

Next, we need a method for extracting the required information from web doc-

uments. However, the design of this module differs from traditional information

extraction, posing interesting challenges. We need a good integration scheme to
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merge features from the original database with the features obtained from the ex-

ternal source. As new information (documents) arrives, the parameters of the model

need to be updated incrementally (at train time), and the confidence in the prediction

made by the system must be updated efficiently (at test time).

In our task, the field with missing values can take one of a finite number of possible

values (i.e. a given range of years). Hence, we can view this extraction task as a multi-

class classification problem. Features from the original citation and web documents

are combined to make the prediction using a maximum entropy classifier.

Let ci be a citation (i = 1, . . . , n), qij be a query formed using input from citation

ci and dijk be a document obtained as a result of qij. Assuming that we use all the

queries, we drop the index j. Let yi be a random variable that assigns a label to

the citation ci. We also define a variable yik to assign a label to the document dik.

If Y is the set of all years in the given range, then yi, yik ∈ Y . For each ci, we

define a set of m feature functions fm(ci, yi). For each dik, we define a set of l feature

functions flk(ci, dik, yik). For our model, we assume that fm(ci, yi) is empty. This is

because the information from the citation by itself is not useful in predicting the year

of publication. In the future, we would like to design a more general model that takes

these features into account. We can now construct a model given by

P (yik|ci, dik) =
1

Zd

∑
l

exp(λlfl(ci, dik, yik)), (5.1)

where Zd =
∑
y exp(λlfl(ci, dik, yik))

The above model outputs yik instead of the required yi. We have two options to

model what we want. We can either merge all the features flk(ci, dik, yik) from dik’s

to form a single feature function. This is equivalent to combining all the evidence

for a single citation in the feature space. Alternatively, we can combine the evidence

from different dik’s in the output space. Following are two of the possible schemes for

combining the evidence in the output space. In the first scheme, we take a majority
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vote, i.e., the class with the highest number of yik is predicted as the winning class

and assigned to yi. In the second scheme, highest confidence scheme, we take the

most confident vote, i.e., yi = argmaxyik
P (yik|ci, dik)

5.3.4 Confidence Evaluation System

At train time, the Confidence Evaluation System can measure the ‘goodness’ of

the model after adding each new training document by evaluating it on a valida-

tion set. At test time, confidence in the prediction improves as more information

is obtained. It sets a threshold on the confidence, to either return the required in-

formation to the database, or to request more information from external source. It

also makes the choice between obtaining a new document or to issue a new query at

each iteration, by taking into account the cost and utility factors. Finally, it keeps

track of the effectiveness of queries and documents in making a correct prediction.

This information is useful for learning better ranking models for Query Engine and

Document Filter.

In our system, we train our model using all available resources, and focus on

evaluating test time confidence. For merging evidence in the output space, we employ

two schemes. In max votes, we make a prediction if the percentage of documents in

the winning class crosses a threshold. In highest confidence, we make a prediction if

P (yik|ci, dik) value of the document with the highest P in the winning class passes a

threshold. These schemes help determine if we have completed the task satisfactorily.

For combining evidence in feature space, we use the Entropy Method, in which we

compute the value H = −∑i pi log pi of the current distribution, and compare it

against the confidence threshold. This is the first part of db-inference action.
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5.4 Uncertainty Propagation in Citation Graph

The inherent dependency within the given data set can be exploited for better

resource utilization. In our case, the citation link structure can be used for inferring

temporal constraints. For example, if paper A cites paper B, then assuming that

papers from future can’t be cited, we infer that B must have been published in the

same or earlier year than A. Initially, we have no information about the publication

year for a citation. As information from the web arrives, this uncertainty is reduced.

If we propagate this reduction in uncertainty (or belief) for one of the nodes through

the entire graph, we may need fewer documents (or fewer queries) to predict the

publication year of the remaining nodes. Selecting the citations to query in an effective

order may further improve efficiency.

5.4.1 Propagation Methods

The method Best Index passes the uncertainty message to the neighbors of c as

follows:

∀cb ∈ CBPcb(X = x) = P (X = x|x ≥ y) (5.2)

∀ca ∈ CAPca(X = x) = P (X = x|x < y) (5.3)

Where y = argmaxyP
′
c(X = y). P (X = x|x ≥ y) and P (X = x|x < y) are given by

one of the update methods described below. The method Weighted Average takes a

weighted average over all possible y′s:

∀cb ∈ CBPcb(X = x) = P ′c(X = y)
∑
y

P (X = x|x ≥ y) (5.4)

∀ca ∈ CAPca(X = x) = P ′c(X = y)
∑
y

P (X = x|x < y) (5.5)

5.4.2 Update Methods

If we know that the given paper was published after a certain year, then we can

set the probability mass from before the corresponding index to zero and redistribute
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it to the years after the index. We only show update in one direction here for brevity.

The first update method, Uniform Update, simply redistributes the probability mass,

P (x ≥ y) uniformly to the remaining years. The second update method, Scale Update,

uses conditional probability.

P (X = x|x ≥ y) = 0, x < y (5.6)

= P (X = x) +
1

P (x ≥ y)
, x ≥ y (5.7)

P (X = x|x ≥ y) = 0, x < y (5.8)

=
P (X = x)

P (x ≥ y)
, x ≥ y (5.9)

5.4.3 Combination Methods

Along with passing a message to its neighbors, the node updates itself by com-

bining information from the Document Classifier and the graph structure.

Pc(X = x) = P ′c(X = y)
∑
y

P (X = x|x = y) (5.10)

The following options can be used for computing Pc(X = x). Basic, P (X = x|x = y)

Product Pc(X = x) ∗ P ′c(X = x) and Sum Pc(X = x) + P ′c(X = x)

5.5 Experimental Results

5.5.1 Dataset and Setup

Our data set consists of five citation graphs (462 citations), with years of pub-

lication ranging from 1989 to 2008. The sampling process is parameterized by size

of the network (20-100 citations per graph) and density (min in-degree = 3 and min

out-degree = 6). We use five-fold cross validation on these data sets for all our ex-

periments. We use Mallet [59] for training and testing, and Google search API to
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issue queries. The queries formed using the information from input citations include

the raw title, title in quotes, and author names combined with keywords like “pub-

lication list”, “resume”, “cv” , “year” and “year of publication”. We issue queries

in a random order, and obtain top 10 hits from google. We use around 7K queries

and obtain around 15K documents after filtering. The documents are tokenized and

tokens are tagged to be possible years using a regular expression. The document

filter discards a document if there is no year information found on the webpage. It

also uses a soft match between the title and all n-grams in the body of the page,

where n equals the title length. If there is at least one n-gram with more than 75%

overlap with title tokens, then the document is retained. The selected documents are

passed on in a random order to the MaxEnt model, which uses the following features

for classification: Occurrence of a year on the webpage; the number of unique years

on the webpage; years on the webpage found in any particular order; the years that

immediately follow or precede the title matches; the distance between a ‘surrounding’

year and its corresponding title match and occurrence of the same ‘following’ and

‘preceding’ year for a title match.

5.5.2 Results and Discussion

We first run our RBIE system without exploiting the citation network information.

Table 5.1 shows the results for combining evidence in the feature space. We measure

Precision, Recall and F1 based on using a confidence threshold, where F1 is the

harmonic mean of precision and recall. As seen in table 5.1, as we increase the

entropy threshold, precision drops, as expected. F1 peaks at threshold 0.7. Note that

the number of documents is proportional to the number of queries, because in our

experiments, we stop obtaining more documents or issuing queries when the threshold

is reached.
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Entropy Threshold Precision Recall F1 #Queries #Docs Fraction of Docs
0.1 0.9357 0.7358 0.8204 4497 9564 63.76%
0.3 0.9183 0.8220 0.8666 3752 8010 53.40%
0.5 0.9013 0.8718 0.8854 3309 7158 47.72%
0.7 0.8809 0.9041 0.8909 2987 6535 43.56%
0.9 0.8625 0.9171 0.8871 2768 6088 40.58%

Table 5.1. Baseline results. The graph based method (Weighted Avg propagation,
Scaling update, and Basic combination) gives an F1 value of 0.72 using only 3.06%
documents at all threshold levels.

Update Combination F1 for Best Index F1 for Weighted Avg
Uniform Basic 0.7192 0.7249
Uniform Sum 0.7273 0.5827
Uniform Product 0.6475 0.3460
Scaling Basic 0.7249 0.7249
Scaling Sum 0.6875 0.5365
Scaling Product 0.6295 0.4306

Table 5.2. Comparison of Uncertainty Propagation Methods

Next, we present the results for exploiting citation network information for better

resource utilization. Table 5.2 shows the F1 values obtained using different uncer-

tainty propagation methods at entropy threshold 0.7. The F1 values are smaller

compared to the baseline, because we use far fewer resources, and the uncertainty

propagation methods are not perfect. Using this method, we are able to achieve

87.7% of the baseline F1, by using only 13.2% of the documents compared to the

corresponding baseline result (at threshold 0.7). In absolute terms, the graph based

method (Weighted Avg propagation, Scaling update, and Basic combination) gives

an F1 value of 0.72 using only 3.06% of the total documents. This demonstrates

the effectiveness of the information propagation methods and the value of exploiting

relational nature of the data for RBIE. In the future, belief propagation like methods

can be applied to this problem.

We also experiment with combining evidence in the output space using the two

schemes, and the confidence evaluation schemes described in section 5.3. Fig. 5.2
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(a) Highest Confidence Vote (b) Highest Confidence Vote

Highest Confidence Max Votes Confidence

(c) Majority Vote (d) Majority Vote

Highest Confidence Vote Max Votes Confidence

Figure 5.2. Different combinations of voting and confidence evaluation schemes.
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shows the four precision-recall curves. We see that for High Confidence Confidence

evaluation scheme (fig. 5.2(a),(c)), we obtain high values of precision and recall for

reasonable values of confidence. That is, in the confidence region below 0.9, we obtain

a good F1 value. Especially, the Majority Vote - High Confidence scheme (fig. 5.2(c))

performs exceptionally well in making predictions. However, in the confidence region

between 0.9 to 1.0, the Max Vote scheme (fig. 5.2(b),(d)) gives a better degradation

performance.

5.6 Chapter Summary

This chapter gives the formal definition of the problem of Resource-bounded Infor-

mation Extraction (RBIE), and proposes a new framework for targeted information

extraction under resource constraints to fill missing values in a database. We present

first results on an example task of extracting missing year of publication of scientific

papers, and show how information acquired from an external source can be propa-

gated through a graph, so that uncertainty about the neighbors of an input instance

is reduced, requiring fewer resources. The specific methods recommended here can

also be generalized in many different relational domains, especially when the dataset

has an underlying network structure. In future, we would like to explore more sophis-

ticated uncertainty propagation methods, such as belief-propagation. We can also

explore methods for effectively selecting (say, highly connected) nodes in the graph

for querying. Finally, it would be interesting to see how these methods extend to

extracting multiple interdependent fields.

Under this framework, one way to improve action selection methods is by devel-

oping individual components like Query Engine and Document Filter, by using good

ranking procedures. However, as we have seen, information acquisition methods in-

teract significantly with each other, and hence, we need an RBIE framework that

selects the best action from all types of available actions at each point of time. Also,
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majority of the resource savings in this example come from exploiting the relational

nature of the data, and we would like to instead have a more general purpose resource

saving framework, that also works for i.i.d. instances. We will see such a framework

in the next chapter.
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CHAPTER 6

LEARNING TO SELECT ACTIONS FOR
RESOURCE-BOUNDED INFORMATION EXTRACTION

USING REINFORCEMENT LEARNING

6.1 Introduction

In the previous chapter, we looked at a basic framework for Resource-bounded

Information Extraction (RBIE). The primary technique employed for saving com-

putational resources was exploiting the interdependency of input data. However, in

many RBIE applications, the input data may not exhibit such relational properties,

and may instead be i.i.d. We need a general framework that is applicable even in

such scenarios. One possible direction for saving resources in the RBIE framework

proposed in the previous chapter is to introduce sophisticated methods to rank the

list of queries and documents. The problem with this approach is that as we have

seen so far, in most scenarios, the different information acquisition methods interact

with each other significantly. For example, after inspecting a few non-promising doc-

uments downloaded and processed as a result of one query, the system may decide to

issue a new query. Independent ranking mechanisms in individual components may

not be able to sufficiently capture these interactions. What we need instead, is a

general purpose, dynamically adapting, holistic framework, that takes into account

the state of the database, the results of all the actions so far, as well as the properties

of each action before selecting the ‘best’ action at each point of time. In this chapter,

we propose such a general purpose framework for RBIE.

Consider the following example of a real world RBIE task. Given a database of

top Computer Science departments in the United States (Table 6.1). Such a database
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Univ. Name Fall Deadline Homepage Faculty Dir Num Faculty Num Grad.
Stanford Dec. 13, 2011 ? ? ? 550

MIT Dec. 15, 2011 ? ? ? 890
Princeton Dec.15, 2010 ? ? ? 100

UC-Berkeley Dec. 16, 2010 ? ? ? 222
CMU Dec. 15 ? ? ? ?

Table 6.1. Example Database of Top Computer Science Departments in the U.S.

may compile a lot of relevant information about the departments, such as location,

admission and course information, statistics about the faculty and student body, etc.

The faculty directory on the department websites are often a useful resource to obtain

more information about the faculty, and it is desirable to be able to point the users

of such a database directly to this page. It would also be a very useful starting point

for automatic extraction of more detailed information about the faculty (such as the

number of faculty, research interests, etc). One way to obtain this information is to

find the home pages of the departments and crawl the entire site to find the faculty

directory pages. However, most department websites are large and complex, requiring

us to process thousands of documents, making it a resource-intensive task.

Consider another related example. We are building a database of all faculty across

departments at a university as shown in Table 6.2. We have names of the faculty,

but some of the other information such as contact details, job titles and department

affiliations are missing. Surprisingly, in some cases, the university administration does

not have such a comprehensive, university-wide database. This may be due to the lack

of data exchange, joint appointments across departments, changing contact details,

etc. Building such a database would be extremely useful, since it maintains up-to-date

records of the faculty, and fosters collaboration across departments. A large portion

of this information exists on the Web, but it may not always be found on faculty home

pages. Lecturers and faculty in some of the departments do not have home pages, and

their information is sometimes scattered around the Web. Finding this information
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Faculty Name Phone Email Job Title Department Name

Andrew McCallum (413) 545-1323 ? Professor Computer Science
Jerrold S. Levinsky ? ? Lecturer Legal Studies

Edward G. Voigtman ? ? ? ?
Robert W. Paynter ? ? ? Anthropology

Table 6.2. Example Database of University Faculty

can be challenging, since it is not available in a uniform, structured manner. There

are other problems such as name ambiguities and incorrect or incomplete data.

Again, we can obtain this information by crawling all the websites under the

university domain. However, this, by itself is a resource-intensive task, since most

university websites are large and complex, and we would need to use a lot of com-

putational power to crawl and download the pages, along with the corresponding

network bandwidth, and disk space for storing them. We would also lose out on all

the information that is scattered on the Web, outside the university domain. Can we

accomplish these tasks using a much smaller fraction of these resources?

We know that the information missing in the database is available on some rela-

tively small number of pages on the Web. We need to run some extraction algorithms

on those pages in order to obtain the required information. But before we can run

extraction, we need to download them to our computing infrastructure, and before we

can download them, we need to know where they are located on the Web. A search

engine API, such as Google can help us retrieve these web pages. We first formulate

queries driven by information that is already available in the database, issue them to

the search interface, obtain the location of the web pages, and download them. Then

we can run the necessary algorithms to extract information, and use it to fill missing

entries in the database. This process is more efficient than indiscriminate processing,

and would use relatively smaller amounts of resources.

RBIE for the Web as described in the previous chapter, works as follows. Queries

are formed by combining existing, relevant information in the database with user
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defined keywords. All such queries are issued to the search API, and all of the result

documents are downloaded. The resource savings come from selecting a subset of

the web documents to process by exploiting the network structure in the data. In

general, we may need multiple queries to obtain information about a single entry in

the database, and some queries work better than others. In our university faculty

example, we may form different queries with keywords such as “curriculum vitae”

or “home page”, and it may be the case that one of them is often more successful

than the other in finding the information we need. In some cases, the information in

different fields may be interdependent, and finding one before another may be more

efficient. In order to make the best use of available resources, we need to issue the

most effective queries first.

In most scenarios, one only need process a subset of the documents returned by

the queries. We need to know which of the search results are most likely to contain

the information we are looking for. Information returned in the search result snippet

can be exploited to decide if a web page is worth downloading. Similarly, some

preliminary observation of the downloaded document can be useful to decide if it is

worth passing through an expensive extraction pipeline. Hence, instead of viewing

RBIE as selecting a subset of documents to process, we view it as a sequential decision

making task with a series of resource-consuming actions, and a mechanism to select

the best action to perform at each time step.

In this chapter, we formulate the RBIE problem formally as a Markov Decision

Process (MDP), and propose the use of reinforcement learning techniques for solving

it. The state of this MDP is the state of the database at each time step, and action

is any act that leads to obtaining the required information, such that performing

the action in one state leads to a different state. RBIE process is then finding the

optimal policy in this MDP, so as to obtain most information with the given budget

of actions, since we assume that actions consume resources. In RBIE from the Web
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context, actions are query, which is issuing a query to a search API, download, which is

downloading a web document, and extract, which runs an actual extraction algorithm

on a document. We assume uniform cost for each type of action in this work, but the

proposed framework can easily be extended by incorporating a specific cost model for

the actions and assigning the budget accordingly. By formulating RBIE for the Web

as an MDP, we can explore the rich methods of optimal action selection offered by

reinforcement learning.

In the RBIE for the web setting, query actions might not lead to immediate reward,

but they are necessary to perform before download and extract actions, which may

lead to positive rewards. Hence, we need a method that models delayed rewards

effectively. We propose the use of temporal difference q-learning to learn the value

function for selecting the best action from a set of alternative actions, given a certain

state of the database. We also explore a fast, online, error driven algorithm, called

SampleRank to learn this value function. Since both SampleRank and q-learning are

novel approaches for the RBIE framework, we compare their relative performance

on two example tasks. The first one is finding the URL of faculty directories of

top computer science departments, and the other is finding emails, job titles and

department affiliation for faculty in our university, which we call FindGuru.

In general, we can use any model of choice for information extraction in our

framework that can extract the required information from a web page, and provide

a confidence score for the extracted value. This score can be used to choose the best

among the potential candidate values, and to determine whether or not an existing

entry in the database should be updated by the newly extracted value. We present a

simple, but novel information extraction method that can easily scale to large problem

domains. The basic idea is to generate a list of potential candidate values from the

web page, and using a binary classifier, such as maximum entropy, to classify them

as being correct values or not, by observing features of the context in which they are
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found. The candidate with the maximum probability of being correct is used to fill

the entry in the database.

Our experiments show that for the faculty directory finding task, both SampleR-

ank and q-learning perform better than strong baselines. For faculty contact infor-

mation finding task, the q-learning strategy performs better than the baseline action

selection strategies, as well as SampleRank based approach for learning a value func-

tion. Given the large number of actions to choose from at each time step, and the

size of the corresponding state space, the policy learned is impressive. On this task,

the q-learning based approach is able to obtain 88.8% of the final F1, by only using

8.6% of all possible actions, demonstrating the effectiveness of our method.

6.2 General Problem Setup

Given a database, DB, with arbitrary set of entries with missing values, E. We

assume that we have access to the search API of an external source of semi-structured

or unstructured documents that potentially contain the missing values, such as the

Web. We assume that there exists some information relevant to the entries in E, that

can be used to formulate search queries to the external source. We also assume that

we have established a method for extracting the specific pieces of missing information

from semi-structured or unstructured documents acquired from the external source

(In this work, we describe one such method). Finally, we assume that each individual

action of querying the external source, acquiring a document or extracting information

from it consumes some form of computational resources. The general problem of RBIE

from the Web, is to select the best set of actions that lead to acquiring the missing

values for entries in E, using least amount of resources.

Note that the methods proposed in this work would not be effective if the re-

quired information is not contained in a small subset of the documents, but instead

distributed across a large set of documents. Also, these methods rely on the ability
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to examine the results of previous actions, and may not be applicable in situations

in which this is not true. Furthermore, in our work, we assume uniform cost over

different types of actions. Our approach needs to be extended to the case of highly

skewed costs across different types of actions.

6.3 RBIE for the Web

The RBIE framework presented in this chapter is an instantiation of the RBIA

framework presented in Chapter 1, adapted to the Web domain. The db-inference

action here is morphed into maintaining the confidence for the best candidate in the

database. For RBIE from the Web, we consider three different types of actions -

query, download, and extract. A query action consists of issuing a single query to a

web search API and obtaining a set of search results. In order to form the query, we

need to use some existing information from an input record in the database and a set

of keywords. A download action consists of downloading the web page corresponding

to a single search result. Finally, an extract action consists of performing extraction

on the downloaded webpage to obtain the required piece of information and using it

to fill the slot in the original database. Note that each instantiated ‘action’ consists

of the type of action as well as its corresponding argument, namely, what query to

send for which instance, which URL to download, or what page to extract.

In the case of RBIE from the Web, the query actions can be initialized at the

beginning of the task because we know which instances have missing fields, and the

types of queries that can be used; but download actions and extract actions are

generated dynamically and added to the list of available actions. That is, after a

query action is performed, the download action corresponding to each of the search

results is generated. Similarly, after a web page is downloaded, the corresponding

extract action is generated. At each time point, only the actions that are instantiated
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can be considered as alternative valid actions to be performed. The RBIE task is to

select the “best” action at each time point from a set of all valid actions.

We assume that we are given an existing model, Me for extracting the required

pieces of information from a single web page. We also assume that this model provides

a confidence score for each value predicted. This score can be used to choose the best

among the potential candidate values, and to determine whether or not an existing

entry in the database should be updated by the newly extracted value.

6.3.1 Markov Decision Process Formulation

We cast the Resource-bounded Information Extraction problem as solving a Markov

Decision Process (MDP), M , where the states represent the state of the database at

a given time, along with any intermediate results obtained from the Web, and ac-

tions represent the query, download, and extract actions as described in the previous

section. We represent state as a tuple St〈DBt, It, I
′
t〉, where DBt is the state of the

database at time t, It is the list of intermediate URL results and I ′t is the list of

intermediate page results obtained till time t. The MDP for RBIE is described as a

tuple, M〈S0, γ, T (S, a, S ′), R(S)〉, where S0 is the initial state of the database, γ is

the discount factor, T (S, a, S ′) is the state transition probability, or the probability

that action a in state S at time t will lead to state S ′ at time t+ 1, and R(S) is the

reward function for being in state S.

6.3.2 The RBIE Algorithm

Let V (a, S) ⇒ < be the value function that represents the expected utility of

taking action a in state, S. Hence, the best action to select at each step is:

at+1 = arg max
a
V (a, S) (6.1)
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Algorithm 3 Resource-bounded Information Extraction for the Web using value
function

Input:
Database DB with missing entries, Ei
Learned value function V (a, S)
Learned extraction model, Me

Time budget, b
Initialize all queries using keywords
t = 0
while t <= b do
at+1 = arg maxa V (a, S)
if at+1 is a query action then

Issue query to a web search API
Enqueue corresponding download actions

else if at+1 is a download action then
Download the web page
Enqueue corresponding extract action

else if at+1 is an extract action then
Extract all candidate values from the web page
Score each candidate using the model, Me

Fill the value of the best candidate in Ei
end if
t = t+ 1

end while

Given a value function appropriate for the domain, Algorithm 3 summarizes the RBIE

for Web framework for filling missing information in a database.

6.4 Learning the Value Function

In most real-world applications, the value function does not take a standard form,

and is not readily available. Hence, it must be learned using existing data. We

can represent the value function as some function of the feature values, and learn

the weights on those features through parameter-learning methods. We apply two

different methods to learn a value function appropriate for an RBIE task. The first

one is an online, error driven algorithm, called SampleRank [18, 92], which is adapted

to our state-action framework and promises to be a fast method for learning the

parameters; and the other is temporal difference q-learning[90], which is one of the
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standard methods for learning a value function from data. In this section, we will see

how these methods are applied for RBIE.

6.4.1 SampleRank for RBIE

SampleRank was first introduced in the context of learning parameters for a graph-

ical model [18, 92]. The online nature of SampleRank lets us update the parameters

for each new sampled state during the training process without the need to perform

inference between each step. SampleRank also allows us to define a custom objective

function, R(S), which enforces ranking constraints between pairs of samples. We

adapt it for our state-action framework to learn parameters of the value function for

RBIE. In order to learn this function from training data, we first assume that its

functional form is as follows:

V (a, S) = exp(
∑
i

θiφi(a, S)) (6.2)

Where, Θ = {θi} are model parameters and Φ = {φi} are feature functions, de-

fined over the the database context, the current action, and the results of all previous

actions. Table 6.3 shows the notation for a quick reference.

We start training with state S0, that represents the original state of the database.

We consider all available actions at this point, and sample from states that result

from these actions. In the most general version of this algorithm, we can use multiple

samples at each time step to update the parameters. In our version, we only choose

two samples : the state S∗, which is the result of the best action a∗, predicted by V ,

and the state S ′, which is the best state predicted by R(S).

SampleRank is an error driven learning algorithm, which lets us update parame-

ters when the function learned up to this point makes a mistake. We say the ranking

is in error if the function learned so far assigns a higher score to the sample with the
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V (a, S) Value Function for Action, a and State, S
Θ, θi Parameters for V
Φ, φi Feature Functions
R(S) Objective Function
α Learning Rate
γ Discount Factor (for q-learning)

Table 6.3. Notation reference for learning value function from data for RBIE

lower objective, i.e.:

[(VΘ(S∗) > VΘ(S ′)) ∧ (R(S∗) < R(S ′))] ∨ [(VΘ(S∗) < VΘ(S ′)) ∧ (R(S∗) > R(S ′))]

When this condition is true, we update the parameters, Θ using perceptron up-

date.

Θt ⇐ Θt−1 + α(φ(S ′t, a
′
t)− φ(S∗t , a

∗
t )) (6.3)

Where, α is the learning rate used to temper the parameter updates. Note that

there are also other options available for the functional form of parameter update,

which are not explored here. We now choose the next best action according to value

function with the new parameters and perform that action to get to the next state.

Note that we can use different exploration techniques in the state space to choose the

next state. We continue this process for the specified number of training iterations

to obtain the final parameters of the learned value function. Algorithm 4 describes

how we learn the parameters θi, given training data.

Under the RBIE from the Web setting, we can compute a custom objective func-

tion, R(S) for state St =< DBt, It, I
′
t > as a weighted sum of correct, incorrect and

total number of filled values and intermediate results. The exact form of the objective

function can be application specific.
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Algorithm 4 SampleRank Estimation

1: Input: Training database DB
Initial parameters Θ
Value Function VΘ(a, S)
Objective Function R(S)

2: S0 ← Initial State of DB
3: for t← 1 to number of iterations T do
4: a∗t = arg maxa VΘt−1(St−1, a)
5: S∗t = a∗t (St−1)
6: select sample from all states S reachable from St−1:

S ′t = arg maxS(R(S))
a′t = Action that led to S ′t

7: if Ranks of S ′t and S∗t assigned by VΘt−1 and R are inconsistent then
8: Update Θt ⇐ Θt−1 + α(Φ(S ′t, a

′
t)− Φ(S∗t , a

∗
t ))

9: end if
10: at = arg maxa VΘt(St−1, a) //perform best action
11: St = at(St−1)
12: end for

6.4.2 Q-Learning for RBIE

One of the standard ways of solving an MDP is q-learning[90], which provides

a way to learn to select the best action at each time step by using the Q-function,

Q(a, S). We now discuss a method to learn a q-function from real-world data. Much

of the material in this section follows from [76, 83].

We know that Q-function obeys the following constraints:

Q(a, S) = R(S) + γ
∑
S′
T (S, a, S ′) max

a′
Q(a′, S ′) (6.4)

To use this update equation, we need to learn the transition probability model,

T (S, a, S ′), which is difficult in our setup. Hence, we use the temporal-difference,

or TD q-learning approach, which is also called model-free, because it lets us learn

the Q-function without using the transition probability model. The update equation

for TD q-learning is 1:

1There is some disagreement amongst q-learning experts about which form of reward function to
use. We choose to use R(S′).
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Q(a, S)← Q(a, S) + α(R(S ′) + γmax
a′

Q(a′, S ′)−Q(a, S)) (6.5)

Where, α is the learning rate. For any real-world RBIE task, the state space for the

corresponding MDP is large enough to make it very difficult to learn this function

accurately. Hence, we use function approximation. We represent the Q-function as a

weighted combination of a set of features as follows:

Qθ(a, S) =
∑
i

θiφi(a, S) (6.6)

Where φi(a, S) are the features of the state S and action a, and θi are the weights on

those features that we wish to learn. We now use the following equation [76, 83] for

updating the values of θi to try to reduce the temporal difference between successive

states.

θi ← θi + α
[
R(S ′) + γmax

a′
Q̂θ(a

′, S ′)− Q̂θ(a, S)
]
∂Q̂θ(a, S)

∂θi
(6.7)

We can now use this update equation to learn the parameters of our Q-function from

training data. The TD-q-learning algorithm for RBIE is described in Algorithm 5.

Note that we use ε-greedy approach for exploring the state space, where ε decreases

in proportion to the number of training iterations.

We also need to design a custom reward function, R(S) for using this algorithm.

Under the RBIE from the Web setting, we can compute value of the reward function

as a weighted sum of correct, incorrect and total number of filled values, number of

correct candidates found, and some properties of the intermediate results and can be

application specific.

6.5 The Incremental Extraction Model

In general, we can use any model of choice for information extraction in our

framework that can extract the required information from a web page, and provide
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Algorithm 5 Temporal difference q-learning for RBIE, with ε-greedy exploration
Input:

Training database, DB
Initial parameters, θ
Q Function, Qθ(a, S) =

∑
i θiφi(a, S)

Reward Function, R(S)
Learning Rate, α
Discount factor, γ

S0 ← Initial State of DB
for t← 0 to number of iterations T do
ε = 1− 1

T

With probability ε, pick a random action, at
With probability 1− ε, pick at = arg maxaQθt(a, St)
St+1 = at(St) //perform at
Let a′ be all the valid actions from state, St+1

for i = 0 to number of features do
θit+1 = θit + α[R(St+1) + γmaxa′ Qθt(a

′, St+1)−Qθt(at, St)]φi(at, St)
end for

end for

a confidence score for the extracted value. In this section, we present a simple, but

novel information extraction method that can easily scale to large problem domains.

The basic idea is to generate a list of potential candidate values from the web page,

and using a binary classifier, such as maximum entropy, to classify them as being

correct values or not, by observing features of the context in which they are found.

Algorithm 6 describes how we train the model.

Let E be the set of entries with missing values in the database. We use patterns

and lexicons to generate a list of candidates, CEi
for each entry, Ei ∈ E. A candidate

is a unique string that is a potentially correct value for an entry in the database.

Each candidate, cj ∈ CEi
, consists of a list of mentions, Mj, which represent the

actual occurrence of the candidate string in the web documents. Each candidate may

have multiple mentions, across different web pages. Corresponding to each mention,

mk ∈Mj, we have a list of properties, or features, f(mk) which describe the context

in which it was found. Since we are interested in classifying the single, canonical value
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of these mentions, i.e, the candidate, we collapse the properties of different mentions

for a candidate cj into a single feature function, f(cj).

Let yij be a binary variable that represents whether cj is the correct value for

entry Ei. We can then represent the probability of cj being the correct candidate as:

P (yij|cj) =
1

Z
exp(

∑
l

λlfl(cj, yij)) (6.8)

Where, λl are the weights on the features, and Z, the normalization factor is given

by:

Z =
∑
y

exp(
∑
l

λlfl(cj, yij)) (6.9)

Since this is a supervised approach, our training data consists of the true values of

E, which can be used to train the classifier. At test time, during an extract action,

we classify each cj ∈ CEi
at that time point, and select the one with the maximum

posterior probability, P (yij|cj), as the “best” candidate to fill the slot.

This incremental information extraction approach allows us to keep updating in-

formation in the database, as new Web documents are processed, making it suitable

for RBIE.

6.6 Application: Faculty Directory Finding

6.6.1 Problem and Dataset Description

We are given a list of top 125 Computer Science departments in the United States,

as per the 2006 ranking1 by Computer Research Association. Our goal is to find URL

of the faculty directory home page for each of these departments. This is a non-

trivial task to perform in an automated fashion. Faculty directory pages of different

departments have drastically different formats. They may or may not contain images

1http://www.cs.iit.edu/̃iraicu/rankings/CRA-CS-Rankings-1993-2006.htm
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Algorithm 6 Building Extraction Model, Me

Input:
Training Database DB with entries, E
Pattern or Lexicon Matcher, L(w) that returns a set
of matches, Mw from a Web Page, w
Feature functions, f(.) describing context of Mw

A Supervised Learning algorithm, such as Max Ent
Initialize all queries using keywords
Initialize set of potential candidates per entry, CEi

= {}
Initialize set of candidates for training, Ct = {}
while Any more actions remain do

Pick a random action, a to perform
if a is a query action, or a download action then

Perform a and enqueue corresponding download or extract actions
else if a is an extract action for Web Page, w then
Mw ← L(w)
for Each match, mk ∈Mw do

if String value (mk) matches cj ∈ CEi
then

Add mk as a mention of cj
Merge the features, f(mk) with f(cj)

else
Create a new candidate, cj, and add to CEi

label(cj)← string value (cj) = true value (Ei)?
Add mk as a mention of cj
Set f(cj)← f(mk)

end if
end for

end if
end while
for all CEi

do
Ct ← Ct ∪ CEi

end for
Me ← Train a Max Ent classifier with f(ct), for ct ∈ Ct
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and contact informations of faculties. It is also easy for an automated system to

confuse the faculty directory page with other related pages like the faculty hiring

(both types of pages almost always contain the word “faculty” in the URL) or even

the home page of a particular faculty. A faculty home page may contain many names

of co-authors of papers listed, contact information, as well as the word “faculty”

somewhere in the URL, all of which could contribute to the mix up.

Furthermore, results of web queries are very noisy. Some of them may contain

faculty directory of another university with similar name. They also tend to return

the home pages of popular faculties in the department, along with some commercial

websites that rank universities, and so on. Hence, we need a sophisticated model

to identify faculty directory pages among all the web pages that the search interface

returns.

As a precursor to our task of finding faculty directories, we find the URLs of the

department home pages. This is a fairly easy task. We combine the name of the

university, with keywords “computer science” to form a query and examine the top

hit. In almost all cases, this returns the correct URL of the department home page.

We fill the department homepage column with the returned URL.

Query Type Query String
Q01 “University Name + cs + faculty directory”
Q02 “University Name + cs + inurl:faculty”
Q03 “University Name + cs + faculty site:departmentSite”
Q04 “University Name + cs + site:departmentSite + inurl:faculty”

Table 6.4. Types of queries for the faculty directory finding task. “cs” stands for
“computer science”

The given dataset is split by 70%-30% into training and testing tests. The Google

Search API is used to issue queries. For the faculty directory finding task, we formu-

late four different types of queries per university, as shown in Table 6.4, and consider

top 20 hits returned by the search API. Assuming that we are not operating un-
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der resource-constraints, i.e., by performing all possible actions available, we get the

dataset as described by Table 6.5.

Dataset No. of Universities No. of Queries No. of Docs Total Actions

Training 88 352 5941 12234
Testing 37 148 2437 5022
Total 125 500 8378 17256

Table 6.5. Datasets

6.6.2 Building the Extraction Model

Since we are looking for only the URL of the faculty directory page, rather than

some other information contained within the webpage, we cast the extraction problem

as a classification problem. Hence, we build a Maximum Entropy based classification

model, Me to classify each web page as a faculty directory or not. Furthermore, we

use the posterior of this classifier as the confidence value for each filled entry in the

database. We use MALLET [60] toolkit for building this model, and Stanford NER

model for the NER features[39]. Table 6.6 describes all the features used for this

model.

One of the difficulties in building this model is that there are multiple correct

values of faculty directory pages. This is because pages are redirected, or web sites

have multiple host names. Since it is difficult to manually label all web pages in the

search results (> 8000 documents), we label at most one URL from the results as

the true value. Availability of more labeling resources would help improve accuracy

of the model. This is because some actually correct URL could get labeled as false

during the training and testing phase of the classifier and might adversely affect its

performance. Note that in some cases, none of the URLs returned by the search API

are correct. In such cases, we manually find one correct URL for the faculty directory

page from the web and use that as the true value. There were 17 departments (13.6%

of the data) for which the faculty directory page URL was not returned at all.
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Features related to queries

The type of query used
Hit value in the search result

Features related to URL

The document is HTML like
Words like “faculty”, “directory” and “people” found
Words like “job”, “hire”, “recruit”, or “employ” found
A tilde sign found (might indicate a user homepage)

First or last name found in non-host part of URL
URL host is dot com (not a university)

Same as department website
Same host as department website host

Features related to Web page title

Words related to bad request found
Words like “faculty”, “directory” and “people” found
Words like “job”, “hire”, “recruit”, or “employ” found

Features related to Web page body

Reasonable size
Phrase “bad request” or “error” found

Words like “faculty”, “directory”, or “people” found
Words like “phone”, “email”, “office”, or “professor” found

Word “publications” found
Count of Named Entities found

Count of email pattern matches found
Count of “PhD” pattern matches found

Features related to Web page layout

Count of images found
Count of tables and cells found

Table 6.6. Features of the web page classification model for the faculty directory
finding task

Let us first study the performance of the classifier, in isolation of the resource-

bounded information extraction task. Any inaccuracy in this model, will not only

result in poor accuracy during the RBIE process, but also mis-guide it due to inaccu-

rate confidence prediction. Table 6.7 shows the classification performance of Me. We

also show results on the training data to show the degree of fitting of the model. Note

that F1 is the harmonic mean of Precision and Recall. The main reasons of relatively
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lower F1 values on this model are the missing true URLs as well as the potentially

inaccurate labeling as described above.

Measure Training Set Testing Set

Accuracy 98.38 98.07
Yes Precision 82.14 77.27

Yes Recall 72.52 61.44
Yes F1 77.03 68.45

No Precision 98.93 98.65
No Recall 99.38 99.36

No F1 99.16 99.00

Table 6.7. Performance of the web page classification model for the faculty directory
finding task

6.6.3 RBIE Experiments

At test time, we start with a database that contains the university names and the

home page URLs of their computer science departments. All the faculty directory

URL entries are initially empty. We consider this as time, t = 0, and assume that

each action takes one time unit. The action selection scheme that we are testing

selects one of the available actions, which is performed as described in Algorithm 3.

The action is then marked as completed and removed from all available actions. If an

extract action is selected, it may affect the database by filling a slot and altering the

confidence value associated with that slot. We evaluate the results on the database

at the end of a given budget, b, or if we run out of actions.

Traditionally, information extraction literature uses different criteria for evaluat-

ing the performance of systems. We use the following definitions of evaluation metrics

for our task :

Precision =
No. of Correctly Filled Entries in the Database

No. of Filled Entries in the Database
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Recall =
No. of Correctly Filled Entries in the Database

No. of Test Entries in the Database

F1 =
2 ∗ Precision ∗ Recall

(Precision + Recall)

6.6.3.1 Baselines

We use two baselines for our experiments : random and straw-man. At each time

step, the random approach selects an action randomly from all available actions. The

straw-man approach works as follows. From our initial analysis of the results of the

queries, we found that queries can be sorted by their coverage values as Q03, Q02,

Q04, and Q01. Coverage of a query is the proportion of all faculty directory URLs

that are contained in that query’s results. This means that the first query in this

order is most likely to return the correct URL. Note that this human background

knowledge, and pre-processing analysis provides a huge advantage to the straw-man

method. The action selection order is as follows :

• The query with the highest coverage value is issued for each test instance

• The first hit from the search result for each test instance is downloaded

• The first hit from the search result for each test instance is processed for ex-

traction (classification)

• Subsequent hits from the search result for each test instance are downloaded

and processed

• Subsequent queries are issued in the descending order of their coverage value,

followed by their corresponding download and extract actions.

Note that this approach would quickly fill up the slots with the top hits of po-

tentially effective queries, making it a very strong baseline to test our learning-based

methods against.
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6.6.3.2 Learning Value Function From Data

We now describe how parameters Λ for value function VΛ(S, a) are learned using

training data. Table 6.8 describes the features used. Note that at train time, we do

not impose resource constraints. That is, training is performed till more actions are

available. However, we only run the value function learning for a given number of

iterations, which acts as a type of resource constraint at training time. We determine

the number of iterations and learning rate empirically.

Features related to counts

Counts of Filled Entried
Counts of Intermediate Results

Word ‘Faculty’ inside intermediate results
Features related to corresponding entry

Corresponding entry is empty
Confidence value of the entry (binned)

Features related to query action

Type of query
Features related to download action

Type of the corresponding query
Hit value in the search result

URL and Title contains keywords
URL and Title contains job related keywords

The host is “.com”
Same host as department website

Same as department website
Features related to extract action

Type of the corresponding query
Hit of the corresponding result

URL and Title contains keywords
URL and Title contains job related keywords

Appropriate Size
Bad request code found

Table 6.8. Features for learning value function for the faculty directory finding task

For learning the value function using SampleRank, we start with a database with

the faculty directory URL column empty. We initialize the parameters to zero. At

each time step, we explore all possible actions, sample the states and update the
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parameters as described in Algorithm 4. We then choose the next action to perform

as per the updated parameters and proceed similarly for the specified number of

iterations. In our early experiments, we tried the technique of parameter averaging,

which is recommended in SampleRank literature, but in our case it did not prove to be

very useful, since different types of actions lead to the update of different parameters.

We also use the temporal difference q-learning method as described in Algorithm 5

as well as its variation - biased-q-learning.

We use the following form of the objective function to train our value function.

R(St+1) = Cn∗n+Ck∗k+Cl∗l+Cd∗d+Cr∗r+Cr′ ∗r′−Cd̄∗d̄−Cr̄∗ r̄−Cr̄′ ∗ r̄′ (6.10)

Where, n is the number of slots filled in the database, k is the number of interme-

diate urls found, l is the number of intermediate web pages found, d is the number

of slots filled correctly, d̄ is the number of slots filled incorrectly, r is the number of

correct URLs in the intermediate URL results, r̄ is the number of incorrect URLs in

the intermediate URL results, r′ is the number of correct web pages downloaded in

the intermediate page results and r̄′ is the number of incorrect web pages downloaded

in the intermediate page results.

In order to search through the space of parameters for the learning based methods,

we try different learning rates, α with values 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 and 1.0.

We also run the training for T = 1000, 2000 iterations. For SampleRank, we also use

training iterations, T = 5000, 10000. We use discount factor, γ = 0.9. Finally, we

try ten different, hand designed versions of the objective function, that emphasis a

balance between precision and recall. For each learning-based method, we select the

best performing version, as indicated by area under the acquisition curve.
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6.6.4 Results And Discussion

We now compare the test-time performance of the two baselines and the value

function learned through different algorithms on selecting actions at each time step.

We evaluate performance after each 1000 actions from 0 to 6000. Since the initial

performance of RBIE systems is interesting, we also zoom into the first 1000 actions,

and look at the performance at each 100 action interval. The most effective action

selection scheme is the one that is fastest in achieving high values of evaluation

metrics.

6.6.4.1 RBIE Using a Candidate Classifier Oracle
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Figure 6.1. RBIE for faculty directory finding task using an oracle : Recall (figure
on the right zooms to the first 1000 actions)

We first evaluate performance of the three action selection schemes in the presence

of an oracle that perfectly classifies each webpage as a faculty directory page or not

with infinite confidence, by looking up its true label. We do this to isolate the effect

of inaccuracies in the classification model, Me, which can severely misguide the RBIE

system with wrong confidence values. For example, even if the action selection scheme

selects a good web page for extraction, Me can assign a very low confidence value to it

and hence discourage updating the value in the corresponding slot. Similarly, a wrong

URL with a high confidence could replace a correct one in the database slot. Table
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6.7 shows that the F1 value for ‘yes’ label in the classifier is only 68.45, which may

not be high enough to avoid some of these problems. The experiments with an oracle

allow us to evaluate how well does the learned value function performs in selecting

potentially useful actions early on. Note that for this experiment, we do not consider

precision (and F1), since the value of precision is always one in the presence of an

oracle. Hence, we know that each entry filled in the table is correct, and the scheme

that obtains higher recall during the early actions has been successful in identifying

the best webpages to process using fewer resources.

Figure 6.1 shows the recall values during the RBIE process for the baselines as

well as proposed action selection schemes. The SampleRank method is trained with

T = 5000 iterations, with a learning rate, α = 1.0, and parameters for objective

function, Cn = 3000, Ck = 10000, Cl = 3000, Cd = 1000, Cr = 100, Cr′ = 10, Cd̄ =

200, Cr̄ = 5, Cr̄′ = 1. The q-learning and biased-q-learning are both trained with

T = 2000 and α = 0.005 and α = 0.05 respectively. The parameters for q-learning

are the same as those for SampleRank, and the ones for biased-q-learning are Cn =

3000, Ck = 10, Cl = 30, Cd = 1000, Cr = 100, Cr′ = 10, Cd̄ = 200, Cr̄ = 5, Cr̄′ = 1.

Note that the graphs for q-learning and biased q-learning in the graph on the left are

overlapping. Figure on the right shows detailed differences in the first 1000 actions.

As we see, the learning based approaches perform better than the baselines. Q-

learning and biased-q-learning methods are statistically significantly better than both

baselines (as per Kolmogorov-Smirnov Test, p=0.2). The straw-man method is ex-

tremely effective, because it knows to process the top hits for a good query for each

entry first. Given the complexity of the action domain, and the size of the state space,

this policy is very difficult to learn.

To gain some intuition about the policy learned by q-learning, let us look at a

few top features for each action type. These include presence of large number of

intermediate results, and use of key words like ‘faculty’ in the URL (for download
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and extract actions). Interestingly, the optimum order in which the queries should be

executed (as found by our ‘coverage’ analysis), is independently ‘discovered’ by the

q-learning method. Hence, even though the straw-man method has the advantage

of background human knowledge, such as the importance of hit value in the search

engine results, the learning-based methods learn new and more elaborate patterns

that show relative usefulness of different types of queries and help identify promising

documents to process by ‘examining’ them.

6.6.4.2 RBIE Using Classification Model

We now study the performance of our proposed method using an actual classifi-

cation model, Me. In this case, each action selection strategy needs to balance both

precision and recall. All learning-based methods are trained for 1000 iterations. Sam-

pleRank is trained with learning rate, α = 0.5, and objective function parameters,

Cn = 5000, Ck = 3000, Cl = 3000, Cd = 1000, Cr = 100, Cr′ = 10, Cd̄ = 200, Cr̄ =

0.5, Cr̄′ = 0.01. Q-learning is trained with α = 0.01, and parameters, Cn = 300, Ck =

0, Cl = 0, Cd = 100, Cr = 10, Cr′ = 10, Cd̄ = 200, Cr̄ = 0.5, Cr̄′ = 0.5. Biased-q-

learning is trained with α = 0.1, and parameters, Cn = 3000, Ck = 10000, Cl =

3000, Cd = 1000, Cr = 100, Cr′ = 10, Cd̄ = 200, Cr̄ = 5, Cr̄′ = 1.

Figure 6.2 shows that the straw-man approach is better at achieving high recall

early on, but learning based methods are better at selecting more useful web pages to

be able to fill the slots more accurately. This lets SampleRank to obtain most of the

F1 value within the first 100 actions, and outperform the baselines in the first, crucial

400 actions. The drop in precision later on is due to inaccuracies in the confidence

values predicted by Me, which leads to a correct entry being replaced by an incorrect

one.

Biased-q-learning is able to obtain the best F1 value it can achieve using only 800

actions (which is around 15% of all actions). This demonstrates the effectiveness of
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Figure 6.2. RBIE for faculty directory finding task using the classification model,
Me : From top, F1, Precision, Recall (figures on the right zoom to the first 1000
actions)

102



the learning-based approach in selecting good actions for information gathering task.

We believe that with more accurate labeling and a better classifier, learning-based

method can be shown to be even more efficient.

6.7 Application: FindGuru, Extracting Faculty Information

6.7.1 Problem Setup

Given a list of names of university faculty, our goal is to extract their email address,

job title and department affiliation from the Web. In this section, we describe how

we apply the RBIE framework to build a system that can efficiently acquire this

information. We also describe experiments testing the effectiveness of SampleRank

and q-learning algorithms in selecting the most effective actions at each time step.

This is a challenging task due to several factors. In some cases, this information is

readily available on faculty home pages, which are semi-structured. However, lecturers

and faculty in many departments do not have home pages. Their information is

scattered around the Web, without a uniform structure. Web pages are noisy, and may

lead to unexpected errors while performing extraction. Name ambiguity is another

challenge, since many of the faculty have common names they share with other famous

personalities. Some information on the Web is stale, or contradicting. For example,

a faculty member can be listed on one page as “assistant professor”, while on another

as “associate professor”, reflecting a recent change of title. Finally, some information

is not available on the Web at all.

6.7.2 Dataset Description

We start with a list of faculty from University of Massachusetts at Amherst.

We randomly choose 100 of these records as our dataset. The fields contain the

first, middle and last name of the faculty, their email address, a list of job titles,

and a list of department affiliations. Joint appointments lead to multiple job titles
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and department affiliations. The dataset we received contains several inaccuracies

and is cleaned for better evaluation of our methods. For example, in some cases, a

single column contains names of different departments. These are split into multiple

columns. Punctuation and abbreviations, such as “Assoc. Prof.” are cleaned and

expanded. Despite the cleaning effort, the dataset we use is incomplete and contains

errors. For example, the most current job titles are not reflected, and only one email

address is included in the dataset, which may not be the one used by the person,

or published on the Web. These imperfections in the data make both training and

evaluation of our system challenging. Another problem in evaluating the accuracy of

our system is the “generic-specific” problem in department names. For example, our

system might predict the department affiliation for a faculty as “finance”, while it

might be listed as “management” in the ground truth dataset, or vice-versa. Since we

use exact string match for evaluation, we may even miss a match such as “school of

management”. Despite the difficulties, it is an interesting real world task for RBIE.

Name Name + Univ
Name in quotes Name in quotes + Univ
Name In Univ Name in quotes In Univ
Name w/ middle In Univ Name w/ middle + Univ
Name + CV Name + Univ + CV
Name + “Resume” Name + Univ + “Resume”
Name + “Profile” Name + Univ + “Profile”
Name + “Bio” Name + Univ + “Bio”
Name + HomePage Name + HomePage In Univ
Name + “Contact” Name + “Contact” In Univ

Table 6.9. Types of queries for FindGuru task. ‘Name’ : first and last name, ‘CV’ :
“curriculum vitae”, ‘Univ’ : “university of massachusetts at amherst” and ‘In Univ’
: “site:umass.edu”

We use the Google search API for our experiments. In our task, the three fields

that we extract are related to each other and often found in the proximity of each

other on the same web pages. Hence, our query actions correspond to the entire record

in the database, as opposed to a single ‘entry’, or cell. We formulate 20 different types
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of queries per faculty, as shown in Table 6.9, and consider top 20 hits returned by the

search API. Assuming that we are not operating under resource-constraints, i.e., we

perform all possible actions available, we get the dataset as described by Table 6.10.

This table also helps estimate the size of the state space for our problem.

Dataset # Faculty # Queries # Docs Total Actions

Training 70 1400 13686 28772
Testing 30 600 6065 12730
Total 100 2000 19751 41502

Table 6.10. Datasets for FindGuru task

6.7.3 Training the Extraction Models

Before we move to the action selection experiments, we must build a model for

extracting the relevant fields from individual web pages. Section 6.5 describes the

algorithm we use for training the model. We use the MALLET [60] toolkit’s im-

plementation of the maximum entropy classifier. The available data is first split by

70%-30% for training and testing. The training phase for the extraction model is not

resource-constrained, i.e., we use all possible query, download and extract actions.

The algorithm described in section 6.5 uses a pattern or lexicon matcher that

returns a set of matches from a web page. These matches are added as a list of

candidates to be filled in the database entry. For emails, we use a regular expression

to match all the emails found in the web document. For job titles and department

affiliations, we first build N-grams from body of the web page, where N = 1, 2, 3, 4.

These N-grams are matched against lexicons to find candidate mentions in the web

page. The features used to describe the context of these matches are shown in Table

6.11. The features across a mention are collapsed by using an ‘OR’ operator, since

they are mostly binary. That is, if any feature is turned on in one of the mentions,

it would be turned on for the candidate. In our early experiments, we found this
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method perform better than other merging operations, however, in future, we can

build a more sophisticated method.

Let us first study the performance of the candidate classifier, in isolation of the

resource-bounded information extraction task. Any inaccuracy in this model, will not

only result in poor accuracy during the RBIE process, but also misguide it due to

inaccurate confidence prediction. Table 6.12 shows the classification performance of

Me. Note that F1 is the harmonic mean of precision and recall. The main reasons for

relatively lower F1 values on this model are inaccuracy of training data as described

above, as well as the noisy nature of the web data. The advantage of using this model

is that it is easy to build, and is scaleable for very large scale problems. In the future,

we would like to experiment with a more sophisticated extraction model, in order to

facilitate better accuracy of the classifier, as well as the RBIE process.

6.7.4 Experiments

At test time, we start with the database that contains names of faculty. All other

columns are empty. We consider this as time, t = 0. We assume that each action

takes one time unit. The action selection scheme that we are testing selects one of the

available actions, which is performed as described in Algorithm 3. The action is then

marked as completed and removed from all available actions. If an extraction action

is selected, it may affect the database by filling a slot and altering the confidence

value associated with that slot. We evaluate the results on the database at the end

of a given budget, b, or if we run out of actions.

We are interested in finding the email address, job title and department affilia-

tion, all of which can have multiple true values. Note that this also includes minor

variations. Throughout our evaluations, we compare against the multiple values of a

column, and declare a match if the predicted value exactly matches at least one of

them. We use the following evaluation metrics to measure our system’s performance.
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Features for Email Extractor

Type of query used
Email domain is from UMass

Web page domain name from UMass
Email host and web page URL host match
Relative position of faculty name and email

Match between faculty name and email username
Similarity between faculty sname and email username

Features for Job Title Extractor

Too many matches found on page
Web page domain name from UMass
Web page URL contains faculty name

Position of match on the document
The words “Assistant” or “Associate” preceds match

Relative position of faculty name and job title

Features for Department Extractor

Too many matches found on page
Web page domain name from UMass
Web page URL contains faculty name

Position of match on the document
The word “Department” precedes match

Relative position of faculty name and department name

Table 6.11. Features of the Extraction Models for FindGuru task

Since our task is slightly different from a traditional information extraction task, we

use the following definitions of evaluation metrics.

Precision =
No. of Correctly Filled Entries in the Database

No. of Filled Entries in the Database

Recall =
No. of Correctly Filled Entries in the Database

No. of Test Entries in the Database

F1 =
2 ∗ Precision ∗ Recall

(Precision + Recall)
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Measure Email JobTitle Department

Accuracy 97.97 92.50 96.94
Yes Precision 77.78 36.36 54.54
Yes Recall 87.50 15.38 44.44
Yes F1 82.23 21.62 48.97
No Precision 99.28 94.15 98.11
No Recall 98.57 98.06 98.73
No F1 98.93 96.06 98.42

Table 6.12. Performance of the Extraction Models for FindGuru task

Extraction Recall =
No. of Correct Candidates Extracted

No. of Test Entries in the Database

Note that extraction recall measures the proportion of entries for which a true

candidate value has been extracted from the web page. It may or may not get ranked

as the “best” candidate. However, for the purpose of evaluating the order of selecting

the query, download and extract actions, this is a useful metric. Even though at test

time, it is independent of the performance of the underlying extraction model, Me, it

is still influenced indirectly by Me through training.

6.7.4.1 Baselines

We use two baselines for our experiments : random, and straw-man. At each

time step, the random approach selects an action randomly from all available actions.

The straw-man approach is actually an extremely strong competitor and works as

follows. The first query in the list is issued for each test instance. Next, the first

hit from the search result for each test instance is downloaded and processed for

extraction. Then, subsequent hits from the search result for each test instance are

downloaded and processed. Finally, subsequent queries are issued in the descending

order, followed by their corresponding download and extract actions. Note that this

approach quickly fills up the slots with the top hits of the queries, making it a very

difficult baseline to beat for learning-based methods.
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6.7.4.2 Learning Q-function from Data

We now describe how parameters θi for Q-function QΘ(a, S) are learned using

training data. Table 6.13 shows the features used. Note that at train time, we do

not impose resource constraints. That is, training is performed till more actions are

available. However, we only run Q-function parameter updates for a given number

of iterations, which acts as a type of budget. We determine the number of iterations

and learning rate empirically.

Similar to the test time, we start with a database with the email, job title and

department name columns empty. The true values of these columns are used only to

calculate the reward function. We initialize the parameters to zero. At each time step,

we explore all possible actions, and update the parameters as described in Algorithm

5. We then choose the next action to perform as per the updated parameters and

proceed similarly for the specified number of iterations.

We introduce a variation of q-learning, in which the policy is initialized using

the straw-man approach, followed by the normal q-learning. In this case, a bias value

proportional to the rank of actions proposed by the straw-man method is added to the

q-function value for each state-action pair. We call this method ‘biased-q-learning’ in

our experiments.

We use the following reward function for training.

R(St+1) = Cn ∗ n+ Cm ∗m+ Cd ∗ d+ Cr ∗ r − Cd̄ ∗ d̄− Cr̄ ∗ r̄ (6.11)

Where, n is the number of slots filled in the database, m is the number of correct

candidates found, d is the number of slots filled correctly, d̄ is the number of slots filled

incorrectly, r is the number of web pages containing any correct slot value downloaded

so far, and r̄ is the number of web pages not containing any slot value downloaded

so far.

109



In order to search through the space of parameters for the learning based methods,

we try different learning rates, α with values 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 and 1.0.

We also run the training for T = 1000, 2000 iterations. We use discount factor, γ =

0.9. Finally, we try ten different, hand designed versions of the objective function, that

emphasis a balance between precision and recall. For each learning-based method, we

select the best performing version, as indicated by area under the acquisition curve.

Features related to query, download and extract actions

Type of query

Features related to download and extract actions

Hit value in the search result
URL is from UMass
Webpage is HTML

Title contains keywords
Title contains faculty name

Features related to extract actions

Appropriate Size
Bad request code found

Table 6.13. Features for learning using SampleRank and Q-function for FindGuru
task

6.7.5 Results and Discussion

We now compare the test-time performance of the two baselines, the value func-

tions learned using SampleRank, and q-learning on their ability to select good actions

at each time step. Note that we have already evaluated performance of the extrac-

tion method, and we are now focussing on quality of the action selection strategy. We

evaluate performance after each 2000 actions from 0 to 14000 (since the total number

of actions at test time is 12730). The most effective action selection scheme is the

one that is fastest in achieving high values of evaluation metrics.
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6.7.5.1 RBIE Using a Candidate Classifier Oracle

We first evaluate performance of the four action selection schemes in the presence

of an oracle that perfectly classifies each candidate as the correct value for an entry

or not with infinite confidence by looking up the true label. We do this to isolate the

effect of inaccuracies in the extraction model, Me, which can severely misguide the

RBIE system with wrong confidence values. For example, even if the action selection

scheme selects a good web page for extraction, Me can choose the wrong candidate

for updating the value in the corresponding slot. While training the Q-function, this

translates into incorrect reward values, which can severely impede learning. Table

6.12 shows that the F1 value for ‘yes’ label for each of the extractors are not high

enough to avoid these problems.

All learning-based methods were trained for 2000 iterations. The SampleRank

was trained for with learning rate, α = 1, and objective function parameters, Cn =

1, Cm = 0, Cd = 100, Cr = 10, Cd̄ = 200, Cr̄ = 0.5. Q-learning was trained with α =

0.01, and parameters, Cn = 500, Cm = 0, Cd = 1000, Cr = 100, Cd̄ = 500, Cr̄ = 0.5.

Biased-q-learning is trained with α = 0.1 and parameters, Cn = 0, Cm = 0, Cd =

100, Cr = 0, Cd̄ = 100, Cr̄ = 0. Figure 6.3 shows the recall values during the RBIE

process for different fields, and the total number of entries. Note that in the presence

of an Oracle, other evaluation metrics are not useful, since the precision is always

1, and the recall is the same as the extraction recall. Both q-learning and biased-

q-learning comfortably beat the two baselines for email extraction task, and slightly

outperforms the straw-man method on total entries. They also learn to beat the

random action selection, as well as the value function learned by SampleRank. As

expected, both q-learning and biased-q-learning perform better than SampleRank due

to their modeling of delayed rewards, despite the use of exactly the same features.

To gain some intuition about the policy learned by q-learning, let us look at a few

top features for each action type. For query actions : query type with just the name
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Figure 6.3. RBIE Using the Oracle for FindGuru task. The graphs from top to
bottom are : Email, Job Title, Department Name and Total Entries. (figures on the
right zoom to the first 2000 actions)
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of the faculty, query type with the name of the faculty and the keyword, ‘Homepage’.

For download and extract actions : the URL is html, URL is from a umass.edu domain,

the title contains faculty name, and combinations of the corresponding query type

and range of hit values. For extract actions, it also learned high weights for features

that looked at the size of the documents. Hence, even though the straw-man method

has the advantage of background human knowledge, such as the importance of hit

value in the search engine results, the learning-based methods learn new and more

elaborate patterns that show relative usefulness of different types of queries and help

identify promising documents to process by ‘examining’ them.

Fraction of Action Budget Fraction of Best Recall

0.00% 0.00%
1.43% 7.94%
2.86% 22.22%
4.29% 36.51%
5.71% 50.79%
7.14% 61.90%
8.57% 61.90%
10.00% 69.84%
11.43% 71.43%
12.86% 71.43%
14.29% 77.78%
28.57% 90.48%
42.86% 96.83%
57.14% 96.83%
71.43% 100.00%
85.71% 100.00%
100.00% 100.00%

Table 6.14. Effectiveness of Q-learning in obtaining recall over total entries using
an oracle

Table 6.14 presents the percentage of the best extraction recall obtained over

total entries for the fraction of the action budget. For example, 77.78% of the best

achievable recall (using all available actions) is obtained using only 14.29% and so on.

This shows that the proposed RBIE methods can be effective in obtaining most of
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the useful information using only a fraction of the resources. One thing to note here

is that even with using oracle we are not able to achieve perfect recall at the end of al

available actions. This illustrates how challenging the problem of finding information

about people online is.

6.7.5.2 RBIE Using Extraction Model

We now study the performance of our proposed method using an actual extraction

model, Me. In this case, each action selection strategy needs to balance both precision

and recall. We ran 1000 training iterations of SampleRank (α = 0.001, Cn = 0, Cm =

0, Cd = 100, Cr = 0, Cd̄ = 100, Cr̄ = 0), q-learning (α = 0.01, Cn = 10, Cm =

10, Cd = 1000, Cr = 0, Cd̄ = 50, Cr̄ = 0), and biased-q-learning (α = 0.05, Cn =

500, Cm = 0, Cd = 1000, Cr = 100, Cd̄ = 500, Cr̄ = 0.5). Figure 6.4 shows the

precision, recall, F1 and extraction recall values for total number of entries in the

database, and Fig. 6.5 shows the F1 values of the individual fields. In these methods,

some of the precision and recall curves go down towards the end of information

gathering process due to noise in the web data, and the extraction process. As before,

we see that the straw-man method performs better initially. However, its precision

and recall drops mid-way through the information acquisition process, and q-learning

method performs better. The F1 values over the total number of entries for both q-

learning and biased-q-learning methods are statistically significantly better than both

baselines (as per Kolmogorov-Smirnov Test, p=0.05). Q-learning also comfortably

out-performs SampleRank approach. It achieves 88.8% of the final F1, by only using

8.6% of the total actions. This demonstrates the effectiveness of the policy learned

by the Q-learner for selecting good actions for information gathering task. Note that

these methods perform differently for individual fields. This demonstrates the need

to tackle these fields separately during the information gathering process.
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Figure 6.4. RBIE using extraction model on total entries for FindGuru task. The
graphs from top to bottom are : F1, Precision, Recall and Extraction Recall
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One of the key insights gained from these experiments, is that it is extremely

helpful to examine all the information available at each time step in the information

gathering process. This includes the results of the action taken in the previous time

step, as well as all the intermediate information acquired up to that point. Such

dynamically adapting, learning based approach can result in a flexible solution that

can outperform strong domain-specific heuristics, like the straw-man method in our

examples, and can be valuable in the absence of such domain heuristics. The success of

such a learning based approach can lead to its application in many resource-conscious,

real-world domains.

6.8 Chapter Summary

In this chapter, we formulated the problem of RBIE for the Web as a Markov

Decision Process, and proposed the use of temporal difference q-learning to solve it.

We also compare it to a fast, online, error-driven training method called SampleRank

[92]. We learn a policy for effectively selecting information-gathering actions, leading

to significant reduction in resource-usage. Using two challenging, real-world applica-

tions, we demonstrate that the q-learning-based approach for selecting information-

gathering actions outperforms both, a random and a strong straw-man baselines.

Both q-learning and SampleRank approaches effectively beat the baselines in the

case of finding faculty directory URLs for computer science departments. Note that

in this case, we ‘bake in’ the delayed reward into the objective function, making Sam-

pleRank an effective method for learning the value function. On our example task of

extracting faculty email, job titles and department names, the q-learning based ap-

proach is able to achieve 88.8% of the final F1, by only using 8.6% of the total actions

demonstrating its effectiveness. On this task, we find that SampleRank performs

better than the random approach, but suffers due to its inability to model delayed

reward.
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Figure 6.5. RBIE using extraction model for FindGuru task. The graphs from top
to bottom are : Email, Job Title and Department Name. (figures on the right zoom
to the first 2000 actions)
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, I study various aspects of Resource-bounded Information Acquisi-

tion, including selecting a subset of data for acquiring external information, exploiting

interdependency in the input data for better resource utilization, and a general frame-

work for efficiently extracting specific pieces of information from a large, external text

corpus, such as the Web.

I give a specific definition of the RBIA problem, which helps develop new solutions

to an important class of problems. I also answer the central question of my thesis,

namely, is it possible to significantly reduce the resource requirements for acquiring

external information in real-world RBIA problem domains? Using examples of special

cases of the RBIA problem and extensive experiments, I demonstrate that it is possible

to acquire a large fraction of the total benefit from new information, by only using a

small fraction of the resources. For example, by using a reinforcement learning based

framework for the task of extracting information about faculty from the Web, I show

that we can obtain 88.8% of the final F1 value (that we would have been able to

obtain by using all possible resource-consuming actions), by only using 8.6% of the

total actions.

The Markov Decision Process based framework proposed in this thesis is general,

dynamically adapting, and holistic. I now discuss various directions for improving or

expanding this framework.

The first advantage of the RBIE framework is its adaptability to changing actions.

We can extend the existing actions by adding new actions, modifying the existing
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ones, or splitting and merging them as required. For example, the experiments for

our problem domain show that when extracting information for multiple fields, such as

emails, job titles, and department affiliation, different acquisition strategies perform

differently. Hence, one of the potential improvements to our system would be to define

multiple extract actions, one for each field, rather than a single one that combines

them all. We can also experiment with nested actions, in which the extract actions

are nested within the corresponding download actions. Similarly, all the actions

instantiated as a result of a query action are nested within it. This may also alleviate

the problem of modeling delayed rewards for SampleRank, and lead to a more efficient,

and fast training approach.

Our focus in this thesis is on resource-constraints at test time. However, the tem-

poral difference approach is somewhat resource consuming to train for some domains,

and it would be desirable to develop a faster training method. To this end, apart

from the use of nested actions, experimenting with other variations of SampleRank,

such as different sampling, parameter update, and state exploration strategies may be

fruitful. One of the difficulties in training value function as described here, is that the

objective function needs to be hand designed. This may not be feasible, or effective

in some problem domains. Developing methods to ‘learn’ the reward function can be

an interesting area to explore. We also presented a novel extraction technique that

can scale well for large scale information gathering tasks, and supports the iterative

nature of resource-bounded information acquisition. It would be interesting to study

how more sophisticated extraction methods perform on similar tasks.

The basic formulation of RBIE as an MDP opens up many interesting avenues of

research. Use of TD q-learning is one of the first attempts to learn general information

gathering policies. More advanced techniques from the reinforcement learning litera-

ture, such as SARSA or least-square policy iteration can be explored. Currently, the
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proposed methods assume infinite horizon decision problem. Instead, we can apply

budgeted reasoning style methods, that assume finite horizon setting.

The proposed framework is extendable in many ways. We can extend the set

of information gathering actions defined here to suit the specific needs of a problem,

while using the general MDP framework. Based on the requirements of the domain, we

can adapt a more specific cost model, in which some actions are more expensive than

others. We may also include the problem of selecting a source, for scenarios in which

multiple different sources of external information are available. Furthermore, when

deploying such a system for a real-world application, we need to analyze the tradeoffs

between resources required for acquiring information, and the computational cost of

information acquisition strategies. Another dimension to explore is the possibility for

information acquisition in parallel, which may lead to interesting new paradigms.
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EPILOGUE

Over the years, as I have presented this work at various venues, I have often been

asked one question (in different forms): In today’s world of ‘Big Data’, with easy

availability of massive computational resources, and scalable, parallel, distributed

computing platforms, is there really a need for resource-bounded information acqui-

sition strategies? Why not just apply all our experience of working on the ‘Web

scale’ to the problem? My answer has been this: RBIA is a fundamentally different

problem, in that the information we seek from an external source is very specific. In

most cases, even with the existing computational power, it would be really difficult

to justify the use of sophisticated, yet computationally expensive extraction methods

on ‘Web scale’ data, simply to complete an application-specific database. In some

cases, the external information needs to be purchased at a high cost, motivating the

need for accurately estimating the value of information. Also, not every individual or

organization has access to such computational, or financial resources. Finally, imag-

ination inspires us to do more with the data than what is computationally feasible.

Hence, at least for the foreseeable future, there will be a need for methods that make

efficient use of the available resources to achieve a task. As machine learning and

data mining applications become more ubiquitous in everyday life, I hope that this

thesis makes a strong case for researchers and practitioners to invest more efforts in

this direction.
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