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Abstract. Federated Learning (FL) is quickly becoming a goto distributed train-
ing paradigm for users to jointly train a global model without physically sharing
their data. Users can indirectly contribute to, and directly benefit from a much
larger aggregate data corpus used to train the global model. However, literature on
successful application of FL in real-world problem settings is somewhat sparse.
In this paper, we describe our experience applying a FL based solution to the
Named Entity Recognition (NER) task for an adverse event detection application
in the context of mass scale vaccination programs. We present a comprehensive
empirical analysis of various dimensions of benefits gained with FL based training.
Furthermore, we investigate effects of tighter Differential Privacy (DP) constraints
in highly sensitive settings where federation users must enforce DP to ensure
strict privacy guarantees. We show that DP can severely cripple the global model’s
prediction accuracy, thus disincentivizing users from participating in the federation.
In response, we demonstrate how recent innovation in personalization methods
can help significantly recover the lost accuracy.

1 Introduction

Federated Learning (FL) is a distributed ML paradigm that enables multiple users to
jointly train a shared model without sharing their data with any other users [4430],
offering advantages in both scale and privacy. In FL, multiple users wish to perform
essentially the same task using ML, with a model architecture that is agreed upon in
advance. Each user wants the best possible model for their individual use, but often has
a limited budget for labeling their own data. Pooling the data of multiple users could
improve model accuracy, because accuracy generally increases with increased training
data. However user data cannot be shipped to a common model training facility due
to bandwidth limitations or data privacy concerns. As a result, users locally train the
shared (global) model on their local data, and thereafter send the updated model to the
federation server. The federation server aggregates updates received from its users to
improve the global model for all users.

Although the initial focus of FL has been on targeting millions of mobile devices [4],
also called cross-device FL, the benefits of its architecture are evident even for institu-
tional settings, also called cross-silo FL [28]]. While cross-device FL is concerned with
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both bandwidth consumption and data privacy, cross-silo federations and their users are
considered well equipped with resources to handle bandwidth concerns, and data privacy
is the primary objective. Our work focuses on the cross-silo FL setting.

Today our world grapples with safely rolling out massive scale vaccination programs
to end a pandemic. Understanding adverse events related to these vaccines is critically
important. These adverse events are often expressed in free text form, such as social
media posts and reports provided to health care agencies and pharmaceutical companies.
Currently, mentions of specific adverse events are extracted and coded manually, which
is a time consuming, expensive and non-scalable process. Therefore, Machine Learning
(ML) based methods to extract named entities (adverse events) automatically from such
unstructured data are highly desirable.

Typically, more training data yield more accurate models. Unfortunately, collecting
human annotations for building such Named Entity Recognition (NER) models is expen-
sive, and particularly challenging given the need to maintain privacy of health records.
One way to overcome this data scarcity issue would be for various agencies to share
their data to build a joint model with combined data. However, privacy concerns, govern-
ment regulation and data use agreements might not allow the data to leave individual
organizational or geographical silos. Sharing user data with other users is absolutely not
an option in these settings.

Cross-silo FL makes perfect sense to address such problems. Each vaccine provider’s
data remains in its private silo. At the same time, the provider can collaborate with other
providers on a FL framework to collectively improve the NER model used for adverse
event detection. Everyone benefits without violating data privacy. More specifically, for
institutions participating in a federation as users, restricting data movement helps fulfill
contractual obligations with their customers and comply with legal regulatory constraints
on data movement [[6,17]].

However, restricting the provider’s training data to its private silo does not guarantee
complete privacy. Recent works have demonstrated that the data can indirectly leak out
through model updates shipped by users to the federation server [3/42/44]. To combat this
problem, researchers have proposed the addition of Differential Privacy (DP) [12J14113]]
to FL [1U19131141].

Informally, DP aims to provide a bound on the variation in the model’s output based
on the inclusion or exclusion of a single data point used in its training set. This is done
by introducing precisely calibrated noise in the training process. The method of noise
calibration and injection varies between implementations [[1l41]], but is always structured
to enforce the precise formal DP guarantee, which we define in[section 2} We will refer
to this process as “DP inducing noise injection” henceforth. This noise makes it difficult,
even impossible, to determine whether any particular data point was used to train the
model.

In settings where the federation server is trusted, DP enforcement is delegated to the
federation server [41]. However, in settings where users do not trust even the federation
server, DP may need to be enforced by the users locally [29]. While all this noise
is structured to enforce formally provable privacy guarantees for each training data
point [13], it can significantly degrade accuracy of model predictions. This degradation
may happen to an extent that disincentivizes users from participating in the federation —
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the global (noisy) model performs worse than a user-resident local model trained just on
the user’s dataset, which we call the individual model.

Another instance where the global model may perform worse than the individual
model for a user is when the user’s data distribution is different from most of the users,
or the users collectively have non-IID training data [25l37]]. There is a rapidly growing
body of FL Personalization literature to address this problem [11115I38l39/45l52]], a
handful of which addresses model degradation due to DP induced noise [45152].

We are interested in applying this body of work to real-world problem settings. The
health care sector is one such application domain that can leverage FL in significant ways.
Indeed there is rapidly growing awareness and investment in FL at world-wide scale
including consortiums [43]] and public-private partnerships [26]. This is accompanied by
the beginnings of applied research in this sector [36].

In this paper, we case study application of FL to the problem of vaccine adverse event
detection, the first of its kind to the best of our knowledge. Importance of such a study
cannot be understated in today’s pandemic stricken world. Given the unprecedented
speed at which new vaccines have been rolled out, it is crucial to automatically extract
mentions of adverse events related to these vaccines from patient reports. We study
implications of applying FL to train a Named Entity Recognition (NER) model on the
Vaccine Adverse Event Reporting System (VAERS) dataset that we have annotated and
partitioned by vaccine manufacturers. Each vaccine manufacturer acts as a federation
user whose dataset is siloed in its private sandbox; all these sandboxes participate in our
FL framework over multiple training rounds.

Our experiments reveal several interesting insights including general effectiveness
of FL on model performance, effects of DP enforcement on model performance, and
the value of personalization techniques to incentivize users to participate in FL. In
particular, we show that FL. improves average F1 value by 37.43% over the individual
model, while enforcement of DP (DP-FL) degrades the FLL model’s average F1 by
25.17%. For one of the users, this degradation is so severe that the private FLL model
F1 is worse by 45.55% when compared with the individual model F1. This clearly
makes DP-FL a non-starter for some users to join the federation. We study FL with
Fine-Tuning (FT-FL) [52]], a personalization approach that fine-tunes the global model at
each user after the entire FL training process completes. Interestingly, contrary to prior
work [52], simply augmenting fine-tuning to FL. does not result in prediction accuracy
improvement for the federation users. Instead, user accuracy degrades in most cases.
However, somewhat surprisingly, fine-tuning in the presence of DP (FT-DP-FL) boosts
user accuracy by 24.88%, compared to the individual model, to strongly incentivize
users to join and stay with the federation. We also observe that vaccine reports related
to different manufacturers have slightly different vocabulary (e.g. mentions of different
vaccine names), and different distributions of adverse events, which aid FT-DP-FL in
effectively recovering lost accuracy.

Even more interestingly, our findings indicate a unique incentive structure for users
to join the federation. In particular, we find that users with small amount of training data,
a.k.a. small users, have a strong incentive to join and stay with the federation even when
DP is enforced without fine-tuning. This is because the user’s private dataset is so small
that any locally trained individual model performs poorly. Furthermore, even the global
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model that is degraded because of DP inducing noise performs significantly better than
the user’s individual model. In short, small users have virtually no incentive to leave
the federation, and may not require additional layers of personalization to improve the
global model as long as there are enough participants in the federation.

For users with larger amount of data, the narrative is quite different. In particular,
we observe that the global model’s degradation due to DP inducing noise is significant
enough to disincentivize those users from participating in the federation. As a result, if
they opt for the additional layer of privacy through DP, the importance of personalization
based enhancements, which salvage the accuracy lost due to DP inducing noise, cannot
be understated.

In summary, this paper makes the following contributions:

We present the first comprehensive study, to the best of our knowledge, on applica-
tion of FL to the vaccine adverse event detection task in the field of pharmacovili-
gence on real-world data — the VAERS dataset.

— Our study examines benefits of FL based training, along with its robustness to user
participation.

— We examine challenges posed by enforcement of differential privacy, to the extent
that may disincentivize users from participating in a federation.

— We show that, unlike prior work [52], simply augmenting FL with personalization
techniques, such as the aforementioned fine-tuning (FT-FL), does not necessarily
improve prediction accuracy for FL users. In fact, it degrades prediction accuracy in
our experiments. However, somewhat surprisingly, the same techniques (FT-DP-FL)
turn out to be highly effective in recovering lost accuracy due to DP inducing noise
injection. We furthermore show that personalization is robust to user participation
uncertainties (e.g. users dropping out).

— We report an interesting new incentive structure amongst users participating in the
federation, where users with small amount of training data are strongly incentivized
to join and stay with the federation, whereas users with somewhat larger amounts
of data require enhancements, such as FT-DP-FL, to overcome the pitfalls of DP
inducing noise injection.

— Another surprising finding in our study is that fine-tuning based personalization is

highly resilient to increasingly tighter margins for the differential privacy budget

(e <.

The rest of the paper is structured as follows: We discuss background material and
related work in[section 2] The VAERS system used as the basis of this study is described
in We describe our NER model used in an adverse event detection system,
along with our FL framework and the personalization approach we use in Our
comprehensive experiments and their analysis appears in[section 3}

2 Background

Federated Learning (FL) In FL, a federation server initializes a global model and ships
it to all participating users thereby initiating distributed training. Training happens over
multiple rounds. In each round, each user, on receiving the global model re-trains the
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model on its private data and sends back the resulting parameter updates to the federation
server. The federation server aggregates updates from all users applying them to the
global model, and then ships the revised model back to the users. The most widely used
method of aggregation is FedAvg [30/40], where user parameter updates are averaged
at the federation server and applied to the global model. Formally, FedAvg solves the
following optimization problem:

min f(w)  where, f(w) = %Z fi(w) (1

weER

The function f; = L(w;z;,y;) represents the local loss for each of the n federation
users on the model w using the user’s private data x;, y;.

Figure T]shows the overall FL architecture. Users can dynamically join the federa-
tion or drop out. The framework is structured to be resilient to such changes. Noting
privacy concerns, more recent work has proposed addition of differential privacy to

FL [19/31140].

Updated
Model

Paradmeter . MG = Global Model
Updates Federation
Server

Fig. 1. The Federated Learning setting. M is the global model the federation server sends to
users, each of which re-trains M¢ on its private data and sends the updated model parameters
back to the federation server.

Differential Privacy (DP) Differential Privacy is a mathematically quantifiable
privacy guarantee for a data set used by a computation that analyzes it. While it originally
emerged in the database and data mining communities, triggered by privacy concerns
in Machine Learning (ML) [16/24133/4749]], DP has garnered enormous traction in the
ML community over the last decade [1I517/0IT0].

In DP, the privacy guarantee applies to each individual item in the data set and
is formally specified in terms of a pair of data sets that differ in at most one item.
Specifically, consider an algorithm A such that A : D +— R, where D and R are
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respectively the domain and range of A. Now consider two data sets d and d’ that differ
from each other in exactly one data item. Such data sets are considered adjacent to each
other in the DP literature. Algorithm A is said to be (g, 0)-differentially private if the
following condition holds true for all adjacent d and d’ and any subset of outputs O C R:

PlA(d) € O] < ¢ P[A(d) € O] + & 2)

Enforcement of DP typically translates into introduction of a “correction” in algo-
rithm A to ensure that the differential privacy bound holds for any two adjacent inputs.
This correction is commonly referred to as the noise introduced in the algorithm, its input,
or output to ensure that the (g, 0)-differential privacy bound holds. While a disciplined
introduction of noise guarantees DP, the noise itself leads to accuracy degradation in
the output produced by A. In the context of ML, the algorithm is a model being trained
using sensitive private data sets, and accuracy degradation can significantly hamper the
model’s utility.

Personalization in FL The basic FL algorithm, FedAvg, assumes IID training data
across all FL users. In fact, it is known to be quite effective in practice for such data
distributions. However, FedAvg may perform poorly in the presence of non-IID user
data [25U37]]. A recent flurry of research addresses this problem using personalization
techniques [L1V15038I39145152] that specialize training at each user, typically in the form
of training an additional local model, or letting the local copy of the global model “drift”
from the global model in a constrained fashion. This enables the local model to fit better
to the user’s local data distribution thereby delivering a better performing model.

Adverse Event Mention Extraction By some estimates, adverse drug reactions are among
the leading causes of death in the developed world. Reports of adverse events are a critical
source of information for tracking and studying adverse events associated with medicinal
products. However, portions of the sought information is only available in unstructured
format. The use of and necessity of automated methods for extracting mentions of drug
adverse events from unstructured text is widely recognized in pharmacovigilance [23]].
Several different genres of text are tackled in this line of research, including social
media [21132], biomedical literature [34150], clinical narratives [22/35]] and drug labels
[46]. More recently, use of state of the art deep learning technology for NER have been
proposed [20]].

3 Vaccine Adverse Event Reporting System

Drug and vaccine safety surveillance relies predominantly on spontaneous reporting
systems. These systems are comprised of reports of suspected drug/vaccine adverse
events (potential side effects) collected from healthcare professionals, consumers, and
pharmaceutical companies, and maintained largely by regulatory and health agencies.
Among other, these systems are used to detect possible safety problems — called “signals”
— that may be related to a vaccination or the consumption of a drug. In the US, the
prominent surveillance system for vaccines is the U.S. Centers for Disease Control and
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Prevention (CDC) and the Food and Drug Administration (FDA) Vaccine Adverse Event
Reporting System (VAERS), created in 1990.

The VAERS data (de-identified) is publicly available in structured format. Each
VAERS report includes the name of (and additional information about) the administrated
vaccine, a list of adverse events related to the vaccine, dates, and limited demographic
information about the patient receiving the vaccine (e.g., age, gender). Importantly, the
report also includes a textual narrative describing the adverse event. For example,

“Shortly after patient was vaccinated, she started to feel an itching, tingling feeling
in her throat. Fearing that it was an allergic reaction, I called 911. The patient remained
alert, talking and breathing normally until paramedics arrived, though she stated that
she started to feel additional tingling in her arms and chest.”

In this example, the following token spans would be annotated as adverse events:
“itching”, “tingling feeling in her throat”, “allergic reaction”, “tingling in her arms and
chest”.

Most of the data collected in VAERS is currently processed by humans for down-
stream applications. Adverse event reports, whether they’re forms, emails, articles, or
other source documents, do not arrive in structured format, which means they have to
be entered manually into safety systems. This manual data entry can take hours and
represents a significant cost to the organization. Free-text narratives take the most time,
requiring a manual sift through every sentence to find relevant information and then
enter it into the correct field. With the rapidly increasing volume of such data this human
effort is becoming prohibitive and calls for the increased use of automated methods such
as NER. In addition, pharmacovigilance data such as that available in and similar to
VAERS originates from private siloed sources, motivating the need for privacy preserving
distributed approaches such as FL.

4 Model and Framework

4.1 NER based on Recurrent Neural Networks

The recurrent neural network (RNN) architecture we used to perform NER is based
on a commonly applied BiLSTM architecture. The architecture consists of three major
components: (1) a word representation layer made of word embeddings, (2) two stacked
layers of bidirectional long short-term memory (LSTM) cells, and (3) a feedforward
layer that performs the final BIO sequence labeling.

Pre-trained word embeddings were used to seed the network’s word embedding layer.
These were generated using Word2Vec applied to the sentences comprising the VAERS
NER dataset described in Dropout regularization was implemented between
each of the three major network components. The dropout rate was 0.4.

The network was implemented on PyTorch6 and trained using stochastic mini-batch
gradient descent with the Adam optimizer for a pre-defined number of iterations. Each
iteration processed a batch of 256 randomly selected sentences. The network was trained
for a total of 20 epochs, each epoch consisting of number of sentences in the training set
/ batch size iterations.
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4.2 Federated Learning Framework

We have implemented our own FL simulation framework, on PyTorch6, that hosts the
federation server and users on the same computer. The framework supports several
federated aggregation protocols, including FedAvg and FedSGD [30], of which we
use FedAvg in our evaluation. The framework is extendable to support other custom
aggregation protocols [[11115/38(45l52].

Trust Model Considerations and Differential Privacy The decision to train a ML
model using the FL framework requires careful analysis of privacy considerations for
users’ data. More specifically, the meaning of the term “data privacy” in a given setting
needs to be precisely understood since it has profound implications on techniques
required to enforce the desired data privacy. For instance, in some settings, simply
restricting user data to its private silo is sufficient for the use case. On the other hand,
in settings involving highly sensitive private data (e.g. health records of individuals),
it may be desirable to ensure that even the parameter updates shipped from the user
silo to the federation server cannot be reverse engineered by any means, external to
the user, to determine the user’s training data records. Ultimately, the level of privacy
protection must be agreed upon by all parties involved. While an exhaustive treatment of
a taxonomy of such trust models in FL is beyond the scope of this paper, we assume that
personal health records describing an adverse reaction to a vaccine are highly sensitive
private material. Consequently, they must be protected using techniques guaranteeing
the strictest data privacy.

In the FL setting, these data records would be hosted in a participating pharmaceutical
company’s silo. The pharmaceutical company’s silo performs the role of a user in the
federation. We view Differential Privacy (DP) as an appropriate tool to enforce privacy
guarantees to individuals’ health records. However, more careful analysis of how DP
is enforced in FL settings is required. Other technologies such as secure multi-party
computation [S1] and homomorphic encryption [[18]] may be worth considering, but are
beyond the scope of this work. Additional security technologies such as end-to-end
encryption may be necessary to augument to the DP solution, but is also outside the
scope of this work.

We assume a trust model where users do not trust the federation server, and enforce
DP locally on the parameter updates shipped back to the server. To enforce DP locally,
we use the algorithm proposed by Abadi et al. [1] that injects gaussian noise (calculated
using their moments accountant algorithm) in parameter gradients during local training
at each user. Noisy gradients lead to noisy parameter updates, which are eventually
shipped from the user to the federation server.

Interestingly, since users can possess datasets with different sizes, the computed
noise, which is a function of the dataset size, varies considerably from user to user. For
instance, the noise introduced for a user with a handful of data points is much higher
than the noise introduced by a user with a much larger private dataset. However, FedAvg
smoothes out the noisy updates through the parameter aggregation process (averaging,
in our case). The resulting model that each user receives is much more robust. Note that
our implementation of DP covers the privacy of each narrative, but we assume that there
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is not enough information in the data to link multiple narratives relating to the same
person.

Personalization through Fine Tuning The main allure of FL for a user is the promise
of significant prediction accuracy improvements over a locally trained individual model.
While parameter aggregation through FL can significantly improve accuracy of the global
model, introduction of noise to enforce DP can severely compromise that improvement.
The degradation can be severe enough to make users reconsider their decision to join
the federation, and deter new users from joining the federation. Furthermore, data distri-
butions across users may have significant side effects on the global model’s prediction
accuracy: If a user’s dataset has a significantly different distribution than most of the
federation users, the global model may perform worse than a locally trained individual
model. If users of a federation have non-IID data, the resulting global model may be
ineffective [37].

Many researchers have recently proposed different forms of personalization ap-
proaches to remedy the disparate data distribution problem [28l27)38139/45/48152].
Just two of these works [4552]], to the best of our knowledge, propose personalization
approaches as solutions to model degradation due to DP inducing noise. Among the
proposed personalization approaches, we focus on FL with Fine Tuning [52]]: FT-FL
for fine tuning on top of plain FL, and FT-DP-FL for fine tuning on top of FL with DP
enforcement at the user. In this approach each user continues training, without noise, the
local copy of the global differentially private model after the FL training process has
completed.

The fine tuning based parameter updates are private to each user and are not shared
with the federation. As a result, the fine tuned local models may diverge from the global
model at varying degrees in order to better fit the users’ private data. While endlessly fine
tuning the global model can lead to the model converging to a locally trained individual
model, care must be taken to ensure that the fine-tuned model does not deteriorate. This
can be achieved through standard hyperparameter tuning techniques.

S Experiments

5.1 Dataset

We used a total of 17,841 narratives submitted to VAERS through the years 2015-2017
to form the NER data set used for this study. The narratives were automatically annotated
for adverse event named entities using the list of adverse events supplied with each
report. In total the NER data set used for this study comprised of 87,730 sentences and
39,139 annotated adverse event named entities. In our experiments, we split the data
randomly into train, validation, tune and test sets in the proportion 60%, 10%, 10%,
and 20% respectively. We used the validation set to decide early stopping in the fine
tuning algorithm and tuned the rest of parameters on the tune set. We refer to “large
manufacturers” as those with more than 1000 VAERS reports in this data and “small
manufacturers” as those with fewer reports to reflect the availability of training data in
each user’s silo. In the rest of this paper, we use the terms ‘manufacturer’ and ‘user’
interchangeably.
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Fig. 2. F1 per manufacturer for different methods for € = 2.0

5.2 Experimental Setup

As the first baseline for our experiments, we train Individual models (/nd), i.e. assume
that each manufacturer only uses their own training set, and test on their respective test
set. This baseline represents the case in which the manufacturer chooses not to participate
in the federation at all. FL is the federated learning model trained in a collaborative
fashion across users using the FedAvg algorithm. This model is then fine tuned for
each user using the protocol described in [section 4] which yield a set of models, one
per manufacturer, that we call FT. Next, we introduce DP to the FL model, as described
infsection 4] We use e = 2.0 for this first set of experiments as it is considered a fairly
conservative privacy setting in the literature [I]] and calculate the sigma values suitable
per user. We call this private federated learning variant DP-FL. Finally, we fine tune this
private FL model and call it FT-DP-FL.

The training parameters for all of these algorithms were tuned using a separate tuning
dataset. We use a learning rate of 0.01 and train all the federated models for 20 rounds of
FedAvg, with additional 20 epochs for the fine tuning variants at each manufacturer. For
evaluation, we compute the precision, recall, and F1 of each token label on a 1-vs-all
basis. The values reported are the mean F1 score (henceforth called F1) for the labels at
the beginning or inside of an adverse event mention.

We ask the following questions as part of this study. Does FL perform better than
Ind models across users? What happens when differential privacy is introduced? Does
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personalization help improve accuracy over FL and mitigate DP-FL’s accuracy loss
enough to re-incentivize users to participate in the federation? If fine-tuning based
personalization helps mitigate accuracy loss due to DP, how robust is it to varying
parameters of DP? Finally, we ask if the federation is stable enough for the uncertainties
of real world, such as users dropping out? We also analyze the incentive structure that
emerges for users with varying amounts of training data.

5.3 Private Federated Learning with Personalization

Figure [2| shows the F1 values for each of the described models on the individual users’
test sets. Note that the manufacturers on the x-axis are sorted based on the size of their
training sets. As we can see, the FL. model consistently outperforms /nd models for each
of the users, including large manufacturers with a lot of training data. As table [T|shows,
the amount of error reduction over the Ind model for each user is substantial. Contrary
to findings by Yu et. al. [52]], in our case, personalization based on fine tuning F7-FL
performs worse than FL in most cases. As we add noise related to differential privacy to
the federated learning model, F1 values drop significantly across the board. This makes
participation for larger manufacturers in the federation unattractive, since the DP-FL
model ends up performing worse than their /nd models. However, applying fine tuning
in this case helps bring it back up to the point, where it is again advantageous for each
party to participate in the federation. This shows that personalization based approach
can help mitigate the loss of accuracy from introducing differential privacy.

Vaccine Manufactuer Num |Individual FL FT-DP-FL
Reports F1
F1 |Error Red.| F1 [Error Red.

Merck Co. Inc. 7638 80.10 |82.00| 9.55% |81.20| 5.53%
Sanofi Pasteur 3352 84.60 [90.40| 37.66% |88.40| 24.68%
Pfizer-Wyeth 2428 80.50 |87.00| 33.33% |84.60| 21.03%
Glaxo-Smithkline Biologicals 2289 80.20 |82.20| 10.10% |85.30| 25.76%
Novartis Vaccines And Diagnostics| 1183 77.80 |85.80| 36.04% |81.50| 16.67%
CSL Limited 465 67.10 |88.50| 65.05% |78.30| 34.04%
Medimmune Vaccines Inc. 265 69.30 |83.50| 46.25% |81.10| 38.44%
Seqirus Inc. 111 15.00 |82.10] 78.94% |52.60| 44.24%
Emergent Biosolutions 58 30.10 |89.70| 85.26% |71.90| 59.80%
Berna Biotech Ltd. 52 45.80 [95.40| 91.51% |(82.50| 67.71%

Table 1. F1 and Error Reduction with Federated Learning and Private Federated Learning with
Fine Tuning. ‘Vaccine Manufacturer’ is a field in the public VAERS database that identifies
the manufacturer of the vaccine reported in the VAERS form. There is no relationship between
this field and the reporter. ‘Num VAERS Reports’ does not represent the rate of adverse events
associated with the manufacturer or its products and cannot be used to estimate such rates. The
statistics are based on a sample of reports submitted to VAERS between 2015-2017 whose MedDra
coded adverse events appeared in the narrative. Because the statistics are based on a carefully
selected sample, the distribution of reports shown may not represent the true distribution of reports
associated with different vaccine manufacturers.
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It is interesting to note that for small manufacturers, with an exception of one
with very small amount of evaluation data, it is always beneficial to participate in the
federation, even for DP-FL, with or without personalization. For large manufacturers
however, the DP is only attractive in the presence of the mitigation offered by fine-tuning
based personalization (F7-DP-FL).

5.4 Stability of Federation against Users Leaving

M10]{-1.0]/ 0.0 |-0.2|-0.2]-0.2] 0.3 |-1.3|-1.1]0.0| 0.0 M10{-0.1]-0.2/ 1.0 |0.9]-1.8|-3.2(-0.1|-1.4| 2.2| 0.0

Table 2. Stability of Private FL. with Fine Tuning performance when a single user leaves. M1-M10
are manufacturers sorted in descending order by size. Each row represents a manufacturer that
is leaving the federation. Each Column represents the difference between F1 values under full
federation and this reduced federation for that manufacturer. The table on the left represents FL.
and the table on the right represents FT-DP-FL

Building a federation across organizations can be challenging in the real world due
to a variety of factors. For instance, users may discontinue their participation in the
federation. We simulate this scenario and study the effect of one of the manufacturers
leaving the federation. As we can see from Table 2] both federated learning and private
federated learning with fine tuning are fairly stable against such a change, with the
exception of a few manufacturers with very small amount of training and test data. In
other words, no single manufacturer has disproportionally large impact on the overall
accuracy gains from participating in the federation.

5.5 Federation of Small Manufacturers

Another scenario that we simulate is the one where only participants with small amount
of training data agree to collaborate. In this case, we do not have the advantage of the
large amount of training data from any of the larger manufacturers. To better understand if
such a federation is still advantageous, we compare the F1 values for small manufacturers
in two different scenarios: one, in which they are a part of a large federation with all
manufacturers, and second, in which they are a part of a federation with only the small
manufacturers.

Figure [3| shows these comparisons for FL and FT-DP-FL respectively. As is clear
from the bar chart, even in the case of a federation with just the small manufacturers, most
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Fig. 3. F1 for small manufacturers when they are a part of a larger federation vs. a federation of
only small manufacturers. The graph on left is for FL and the one on right is for FT-DP-FL
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Fig. 4. Average F1 across users for the two differentially private FL variants.

of the manufacturers benefit significantly from participating. In fact, the performance of
all manufacturers in the small federation closely tracks their performance in the large
federation, with one exception.

5.6 Robustness to Differential Privacy Noise

Next, we study the effectiveness of personalization in recovering from the accuracy
loss resulting from differential privacy noise. We vary the parameter ¢ and measure F1
averaged across users for two of the algorithm variants: differentially private federated
learning (DP-FL) and the fine tuned differentially private federated learning (FT-DP-FL).
As we can see from [Figure 4] average F1 for DP-FL deteriorates significantly for values
of € less than 2. However, even in these cases, the personalized version, FT-DP-FL
manages to retain its performance. We believe this is an important finding that provides
significant latitude to differentially private FL frameworks to further tighten the privacy
budget of € without compromising utility.

6 Conclusion

Extracting mentions of vaccine adverse events using machine learning methods is
an extremely urgent task right now. Federated Learning is a promising approach for
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breaking down organizational and geographical barriers to collaboration on building very
effective models to solve this problem. Our work demonstrates that the loss of accuracy
incurred through adding additional layers of privacy can be mitigated by introducing
personalization. We show that manufacturers with dataset of all different sizes can benefit
from participating in such a federation and that it is stable to potential real world changes.
In the future, we would like to investigate other approaches to personalization applied to
this problem domain.
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