Author Disambiguation using
Error-driven Machine Learning with a Ranking Loss Function

Aron Culotta, Pallika Kanani, Robert Hall, Michael Wick, Andrew McCallum
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

Abstract

Author disambiguation is the problem of deter-
mining whether records in a publications database
refer to the same person. A common supervised
machine learning approach is to build a classifier
to predict whether a pair of records is corefer-
ent, followed by a clustering step to enforce tran-
sitivity. However, this approach ignores power-
ful evidence obtainable by examining sets (rather
than pairs) of records, such as the number of pub-
lications or co-authors an author has. In this
paper we propose a representation that enables
these first-order features over sets of records. We
then propose a training algorithm well-suited to
this representation that is (1) error-driven in that
training examples are generated from incorrect
predictions on the training data, and (2) rank-
based in that the classifier induces a ranking over
candidate predictions. We evaluate our algo-
rithms on three author disambiguation datasets
and demonstrate error reductions of up to 60%
over the standard binary classification approach.

Introduction

Record deduplication is the problem of deciding
whether two records in a database refer to the same
object. This problem is widespread in any large-scale
database, and is particularly acute when records are
constructed automatically from text mining.

Author disambiguation, the problem of de-
duplicating author records, is a critical concern
for digital publication libraries such as Citeseer, DBLP,
Rexa, and Google Scholar. Author disambiguation
is difficult in these domains because of abbreviations
(e.g., Y. Smith) misspellings (e.g., Y. Smiht), and
extraction errors (e.g., Smith Statistical).

Many supervised machine learning approaches to au-
thor disambiguation have been proposed. Most of these
are variants of the following recipe: (1) train a binary
classifier to predict whether a pair of authors are dupli-
cates, (2) apply the classifier to each pair of ambiguous
authors, (3) combine the classification predictions to
cluster the records into duplicate sets.

Copyright (© 2011, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

This approach can be quite accurate, and is attrac-
tive because it builds upon existing machine learning
technology (e.g., classification and clustering). How-
ever, because the core of this approach is a classifier
over record pairs, nowhere are aggregate features of an
author modeled explicitly. That is, by restricting the
model representation to evidence over pairs of authors,
we cannot leverage evidence available from examining
more than two records.

For example, we would like to model the fact that
authors are generally affiliated with only a few institu-
tions, have only one or two different email addresses,
and are unlikely to publish more than thirty publica-
tions in one year. None of these constraints can be
captured with a pairwise classifier, which, for example,
can only consider whether pairs of institutions or emails
match.

In this paper we propose a representation for au-
thor disambiguation that enables these aggregate con-
straints. The representation can be understood as a
scoring function over a set of authors, indicating how
likely it is that all members of the set are duplicates.

While flexible, this new representation can make it
difficult to estimate the model parameters from train-
ing data. We therefore propose a class of training algo-
rithms to estimate the parameters of models adopting
this representation. The method has two main charac-
teristics essential to its performance. First, it is error-
driven in that training examples are generated based on
mistakes made by the prediction algorithm. This ap-
proach focuses training effort on the types of examples
expected during prediction.

Second, it is rank-based in that the loss function in-
duces a ranking over candidate predictions. By repre-
senting the difference between predictions, preferences
can be expressed over partially-correct or incomplete
solutions; additionally, intractable normalization con-
stants can be avoided because the loss function is a
ratio of terms.

In the following sections, we describe the representa-
tion in more detail, then present our proposed training
methods. We evaluate our proposals on three real-world
author deduplication datasets and demonstrate error-
reductions of up to 60%.

Author Title Institution Year
Y. Li Understanding Social Networks Stanford 2003
Y. Li Understanding Network Protocols | Carnegie Mellon | 2002
Y. Li Virtual Network Protocols Peking Univ. 2001

Table 1: Author disambiguation example with multiple institutions.

Author Co-authors

Title

P. Cohen A. Howe
P. Cohen | M. Greenberg, A. Howe, ...
P. Cohen M. Greenberg

How evaluation guides AI research

Trial by Fire: Understanding the design requirements ... in complex environments
MU: a development environment for prospective reasoning systems

Table 2: Author disambiguation example with overlapping co-authors.

Motivating Examples

Table 1 shows three synthetic publication records that
demonstrate the difficulty of author disambiguation.
Each record contains equivalent author strings, and the
publication titles contains similar words (networks, un-
derstanding, protocols). However, only the last two au-
thors are duplicates.

Consider a binary classifier that predicts whether a
pair of records are duplicates. Features may include the
similarity of the author, title, and institution strings.
Given a labeled dataset, the classifier may learn that
authors often have the same institution, but since many
authors have multiple institutions, the pairwise classi-
fier may still predict that all of the authors in Table 1
are duplicates.

Consider instead a scoring function that considers all
records simultaneously. For example, this function can
compute a feature indicating that an author is affiliated
with three different institutions in a three year period.
Given training data in which this event is rare, it is
likely that the classifier would not predict all the au-
thors in Table 1 to be duplicates.

Table 2 shows an example in which co-author infor-
mation is available. It is very likely that two authors
with similar names that share a co-author are dupli-
cates. However, a pairwise classifier will compute that
records one and three do not share co-authors, and
therefore may not predict that all of these records are
duplicates. (A post-processing clustering method may
merge the records together through transitivity, but
only if the aggregation of the pairwise predictions is
sufficiently high.)

A scoring function that considers all records simulta-
neously can capture the fact that records one and three
each share a coauthor with record two, and are there-
fore all likely duplicates.

In the following section, we formalize this intuition,
then describe how to estimate the parameters of such a
representation.

Scoring Functions for Disambiguation

Consider a publications database D containing records
{R1...Ry,}. Arecord R; consists of k fields {Fy ... Fj},

where each field is an attribute-value pair F; =
(attribute, value). Author disambiguation is the prob-
lem of partitioning {R; ... R, } into m sets {A; ... A},
m < n, where Ay = {R; ... Ry} contains all the pub-
lications authored by the lth person. We refer to a
partitioning of D as T(D) = {A;... A}, which we
will abbreviate as T

Given some partitioning 7', we wish to learn a scor-
ing function S : T +— R such that higher values of S(T")
correspond to more accurate partitionings. Author dis-
ambiguation is then the problem of searching for the
highest scoring partitioning:

T* = argmax S(T)
T

The structure of S determines its representational
power. There is a trade-off between the types of evi-
dence we can use to compute S(7T') and the difficulty
of estimating the parameters of S(7T"). Below, we de-
scribe a pairwise scoring function, which decomposes
S(T') into a sum of scores for record pairs, and a clus-
terwise scoring function, which decomposes S(T) into
a sum of scores for record clusters.

Let T be decomposed into p (possibly overlapping)
substructures {¢; ...¢,}, where ¢; C T indicates that ¢;
is a substructure of T. For example, a partitioning T
may be decomposed into a set of record pairs R;, R;.

Let f : t — RF be a substructure feature function
that summarizes ¢t with k real-valued features'.

Let s: f(t) x A — R be a substructure scoring func-
tion that maps features of substructure ¢ to a real value,
where A € RF is a set of real-valued parameters of s.
For example, a linear substructure scoring function sim-
ply returns the inner product (A, f(¢)).

Let Sy :s(f(t1),A) x ... xs(f(tn),A) — R be a fac-
tored scoring function that combines a set of substruc-
ture scores into a global score for 7. In the simplest
case, Sy may simply be the sum of substructure scores.

Below we describe two scoring functions resulting
from different choices for the substructures t.

!Binary features are common as well: f:t — {0,1}*

Pairwise Scoring Function

Given a partitioning T, let ¥/ represent a pair of records
R;, R;. We define the pairwise scoring function as

Sp(T,A) =Y s(f(t7),A)
ij
Thus, S,,(T) is a sum of scores for each pair of records.
Each component score s(f(t¥7), A) indicates the prefer-
ence for the prediction that records R; and R; co-refer.
This is analogous to approaches adopted recently
using binary classifiers to perform disambiguation (?;

?).

Clusterwise Scoring Function

Given a partitioning T, let £ represent a set of records
{R;...R;} (e.g., t* is a block of the partition). We
define the clusterwise scoring function as the sum of
scores for each cluster:

SC<T’ A) = Zs(f(tk)v A)

k

where each component score s(f(t¥,A)) indicates the
preference for the prediction that all the elements
{R;...R;} co-refer.

Learning Scoring Functions

Given some training database DT for which the true
author disambiguation is known, we wish to estimate
the parameters of S to maximize expected disambigua-
tion performance on new, unseen databases. Below, we
outline approaches to estimate A for pairwise and clus-
terwise scoring functions.

Pairwise Classification Training

A standard approach to train a pairwise scoring func-
tion is to generate a training set consisting of all pairs
of authors (if this is impractical, one can prune the set
to only those pairs that share a minimal amount of sur-
face similarity). A classifier is estimated from this data
to predict the binary label SameAuthor.

Once the classifier is created, we can set each
substructure score s(f(t¥)) as follows: Let p; =
P(SameAuthor = 1|R;, R;). Then the score is

ij D1 if Ri, R; €T
S(f(t)) X {1 —p otherwise

Thus, if R;, R; are placed in the same partition in 7',
then the score is proportional to the classifier output
for the positive label; else, the score is proportional to
output for the negative label.

Clusterwise Classification Training

The pairwise classification scheme forces each coref-
erence decision to be made independently of all oth-
ers. Instead, the clusterwise classification scheme
implements a form of the clusterwise scoring function

Algorithm 1 Error-driven Training Algorithm

1: Input:
Training set D
Initial parameters A°
Prediction algorithm A
: while Not Converged do
for all (X, T*(X)) € D do
T(X) < A(X,AY)
D. < CreateExamplesFromErrors(T(X),T* (X))
A" < UpdateParameters(De, A")
end for
: end while

S B A Rl

described earlier. A binary classifier is built that pre-
dicts whether all members of a set of author records
{R;--- R;} refer to the same person. The scoring func-
tion is then constructed in a manner analogous to the
pairwise scheme, with the exception that the probabil-
ity p1 is conditional on an arbitrarily large set of men-
tions, and s o p; only if all members of the set fall in
the same block of T.

Error-driven Online Training

We employ a sampling scheme that selects training ex-
amples based on errors that occur during inference on
the labeled training data. For example, if inference is
performed with agglomerative clustering, the first time
that two non-coreferent clusters are merged, the fea-
tures that describe that merge decision are used to up-
date the parameters.

Let A be a prediction algorithm that computes a se-
quence of predictions, i.e., A: X x A — TY(X) x ... x
T7(X), where T"(X) is the final prediction of the algo-
rithm. For example, A could be a clustering algorithm.
Algorithm 1 gives high-level pseudo-code of the descrip-
tion of the error-driven framework..

At each iteration, we enumerate over the training ex-
amples in the original training set. For each example,
we run A with the current parameter vector A* to gen-
erate T(X), a sequence of predicted structures for X.

In general, the function CreateExamplesFromErrors
can select an arbitrary number of errors contained in
T(X). In this paper, we select only the first mistake
in T(X). When the prediction algorithm is computa-
tionally intensive, this greatly increases efficiency, since
inference is terminated as soon as an error is made.

Given D, the parameters A'*! are set based on the
errors made using A?. In the following section, we de-
scribe the nature of D, in more detail, and present a
ranking-based method to calculate A

Learning To Rank

An important consequence of using a search-based clus-
tering algorithm is that the scoring function is used to
compare a set of possible modifications to the current
prediction. Given a clustering T, let N'(T"%) be the set
of predictions in the neighborhood of T*®. T*T! € N'(T%)
if the prediction algorithm can construct T°*! from T"

in one iteration. For example, at each iteration of the
greedy agglomerative system, N (T?) is the set of clus-
terings resulting from all possible merges a pair of clus-
ters in T¢. We desire a training method that will en-
courage the inference procedure to choose the best pos-
sible neighbor at each iteration.

Let N(T) € N(T) be the neighbor of T that has

the maximum predicted global score, ie., N(T) =
argmaxy e nr(ry Sg(T'). Let S* : T — R be a global
scoring function that returns the true score for an ob-
ject, for example the accuracy of prediction 7.

Given this notation, we can now fully describe the
method CreateExamplesFromErrors in Algorithm 1.
An error occurs when there exists a structure N*(T)

such that S*(N*(T)) > S*(N(T)). That is, the best

predicted structure N (T) has a lower true score than
another candidate structure N*(T').

A training example (N (T'), N*(T)) is generated?, and
a loss function is computed to adjust the parameters to
encourage N*(T) to have a higher predicted score than
N(T). Below we describe two such loss functions.

Ranking Perceptron The perceptron update is
At-‘rl — At +y . F(T)

where y = 1if T = N*(T), and y = —1 otherwise.

This is the standard perceptron update (?), but in
this context it results in a ranking update. The update
compares a pair of F'(T)) vectors, one for N(T') and one
for N*(T'). Thus, the update actually operates on the
difference between these two vectors. Note that for ro-
bustness we average the parameters from each iteration
at the end of training.

Ranking MIRA We use a variant of MIRA (Mar-
gin Infused Relaxed Algorithm), a relaxed, online max-
imum margin training algorithm (7). We updates the
parameter vector with three constraints: (1) the better
neighbor must have a higher score by a given margin,
(2) the change to A should be minimal, and (3) the in-
ferior neighbor must have a score below a user-defined
threshold 7 (0.5 in our experiments). The second con-
straint is to reduce fluctuations in A. This optimization
is solved through the following quadratic program:

A = argmin ||[AY — A|]? s.t.
A

S(N*(T),A) = S(N(T),A) > 1
S(N,A) <7
The quadratic program of MIRA is a norm-
minimization that is efficiently solved by the method

of Hildreth (?). As in perceptron, we average the pa-
rameters from each iteration.

2While in general D, can contain the entire neighbor-
hood N(T), in this paper we restrict D. to contain only
two structures, the incorrectly predicted neighbor and the
neighbor that should have been selected.

Experiments
Data
We used three datasets for evaluation:
e Penn: 2021 citations, 139 unique authors
e Rexa: 1459 citations, 289 unique authors
e DBLP: 566 citations, 76 unique authors

Each dataset contains multiple sets of citations au-
thored by people with the same last name and first ini-
tial. We split the data into training and testing sets
such that all authors with the same first initial and last
name are in the same split.

The features used for our experiments are as follows.
We use the first and middle names of the author in
question and the number of overlapping co-authors. We
determine the rarity of the last name of the author in
question using US census data. We use several differ-
ent similarity measures on the title of the two citations
such as the cosine similarity between the words, string
edit distance, TF-IDF measure and the number of over-
lapping bigrams and trigrams. We also look for simi-
larity in author emails, institution affiliation and the
venue of publication whenever available. In addition
to these, we also use the following first-order features
over these pairwise features: For real-valued features,
we compute their minimum, maximum and average val-
ues; for binary-valued features, we calculate the propor-
tion of pairs for which they are true, and also compute
existential and universal operators (e.g., “there exist a
pair of authors with mismatching middle initials”).

Results

Table 3 summarizes the various systems compared in
our experiments. The goal is to determine the effective-
ness of the clusterwise scoring functions, error-driven
example generation, and rank-based training. In all
experiments, prediction is performed with greedy ag-
glomerative clustering.

We evaluate performance using three popular mea-
sures: Pairwise, the precision and recall for each pair-
wise decision; MUC (?), a metric commonly used in
noun coreference resolution; and B-Cubed (?).

Tables 4, 5, and 6 present the performance on the
three different datasets. Note that the accuracy varies
significantly between datasets because each has quite
different characteristics (e.g., different distributions of
papers per unique author) and different available at-
tributes (e.g., institutions, emails, etc.).

The first observation is that the simplest method of
estimating the parameters of the clusterwise score per-
forms quite poorly. C/U/L trains the clusterwise score
by uniformly sampling sets of authors and training a
binary classifier to indicate whether all authors are du-
plicates. This performs consistently worse than P/A/L,
which is the standard pairwise classifier.

We next consider improvements to the training algo-
rithm. The first enhancement is to perform error-driven
training. By comparing C/U/L with C/E/P. (the

Component

Name

Description

Score Representation

Pairwise (P)
Clusterwise (C)

See Section Pairwise Scoring Function.
See Section Clusterwise Scoring Function.

Training Example Generation

Error-Driven (E)
Uniform (U)
All-Pairs(A)

See Section Error-driven Online Training.
Examples are sampled u.a.r. from search trees.
All positive and negative pairs

Loss Function

Non-Ranking Perceptro

Ranking MIRA (M)
Non-Ranking Mira (M.)
Ranking Perceptron (Pr)
(Pe)

n
Logistic Regression(L)

See Section Ranking MIRA.
MIRA trained for classification, not ranking.
See Section Ranking Perceptron.
Perceptron for classification, not ranking.
Standard Logistic Regression.

Table 3: Description of the various system components used in the experiments.

Pairwise B-Cubed MUC
F1 Precision | Recall F1 Precision | Recall F1 Precision | Recall
C/E/M, || 36.0 96.0 22.1 48.8 97.9 32.5 79.8 99.2 66.8
C/E/M. || 244 99.2 13.9 35.8 98.7 21.8 71.2 98.3 55.8
C/E/P, 52.0 77.9 39.0 63.8 84.1 51.4 88.6 94.5 83.4
C/E/P, 40.3 99.9 25.3 52.6 99.6 35.7 81.5 99.6 68.9
C/U/L 36.2 74.8 23.9 46.1 80.6 32.2 80.4 89.6 73.0
P/A/L 44.9 96.8 29.3 56.0 95.0 39.7 87.2 96.4 79.5

Table 4: Author Coreference results on the Penn data. See Table 3 for the definitions of each system.

error-driven perceptron classifier) and C/E/M,. (the
error-driven MIRA classifier), we can see that perform-
ing error-driven training often improves performance.
For example, in Table 6, we see pairwise F1 increase
from 82.4 for C/U/L to 93.1 for C/E/P. and to 91.9 for
C/E/M.. However, this improvement is not consistent
across all datasets. Indeed, simply using error-driven
training is not enough to ensure accurate performance
for the clusterwise score.

The second enhancement is to perform a rank-based
parameter update. With this additional enhancement,
the clusterwise score consistently outperforms the pair-
wise score. For example, in Table 5, C'/E/P, obtains
nearly a 60% reduction in pairwise F1 error over the
pairwise scorer P/A/L. Similarly, in Table 5, C/E /M,
obtains a 35% reduction in pairwise F1 error P/A/L.
While perceptron does well on most of the datasets,
it performs poorly on the DBLP data (C/E/Pg, Ta-
ble 6). Because the perceptron update does not con-
strain the incorrect prediction to be below the clas-
sification threshold, the resulting clustering algorithm
can over-merge authors. MIRA’s additional constraint
(S(N,A) < 7) addresses this issue.

In conclusion, these results indicate that simply in-
creasing representational power by using a clusterwise
scoring function may not result in improved perfor-
mance unless appropriate parameter estimation meth-
ods are used. The experiments on these three datasets
suggest that error-driven, rank-based estimation is an
effective method to train a clusterwise scoring function.

Related Work

There has been a considerable interest in the problem of
author disambiguation (?; ?; ?; ?; ?); most approaches
perform pairwise classification followed by clustering.
? (?) wuse spectral clustering to partition the data.
More recently, ? (?) use SVM to learn similarity met-
ric, along with a version of the DBScan clustering al-
gorithm. Unfortunately, we are unable to perform a
fair comparison with their method as the data is not
yet publicly unavailable. ? (?) present a comparative
study using co-author and string similarity features. ?
(?) show suprisingly good results using unsupervised
learning.

There has also been a recent interest in training
methods that enable the use of global scoring functions.
Perhaps the most related is “learning as search opti-
mization” (LaSO) (7). Like the current paper, LaSO
is also an error-driven training method that integrates
prediction and training. However, whereas we explic-
itly use a ranking-based loss function, LaSO uses a bi-
nary classification loss function that labels each can-
didate structure as correct or incorrect. Thus, each
LaSO training example contains all candidate predic-
tions, whereas our training examples contain only the
highest scoring incorrect prediction and the highest
scoring correct prediction. Our experiments show the
advantages of this ranking-based loss function. Addi-
tionally, we provide an empirical study to quantify the
effects of different example generation and loss function
decisions.

Pairwise B-Cubed MUC
F1 Precision | Recall F1 Precision | Recall F1 Precision | Recall
C/E/M, || 74.1 86.3 65.0 78.0 94.6 66.4 82.7 98.0 71. 5
C/E/M. | 394 98.1 24.7 59.3 96.6 42.8 72.7 96.7 58.2
C/E/P, 86.4 87.4 85.5 81.8 81.6 82.0 88.8 87.4 90.2
C/E/P, 49.5 87.2 34.5 65.8 94.6 50.4 78.3 96.2 66.0
C/UJ/L 45.0 87.3 30.3 67.2 86.9 54.8 82.0 87.8 76.4
P/A/L 66.2 72.4 61.0 75.7 75.5 76.0 88.6 85.3 92.2

Table 5: Author Coreference results on the Rexa data. See Table 3 for the definitions of each system.

Pairwise B-Cubed MUC
F1 Precision | Recall F1 Precision | Recall F1 Precision | Recall
C/E/M, || 92.2 94.2 90.2 89.0 94.4 84.2 93.5 98.5 89.0
C/E/M. | 91.9 90.6 93.2 87.6 94.8 81.5 90.7 98.5 84.1
C/E/P, 45.3 29.4 99.4 72.9 57.8 98.8 94.2 89.3 99.6
C/E/P. 93.1 91.0 95.3 90.6 92.0 89.3 94.3 97.2 91.6
C/U/L 82.4 95.7 72.3 83.2 93.0 75.3 93.1 96.2 90.3
P/A/L 88.0 84.6 91.7 86.1 84.6 87.8 93.0 93.0 93.0

Table 6: Author Coreference results on the DBLP data. See Table 3 for the definitions of each system.

Conclusions and Future Work

We have proposed a more flexible representation for
author disambiguation models and described param-
eter estimation methods tailored for this new repre-
sentation. We have performed empirical analysis of
these methods on three real-world datasets, and the ex-
periments support our claims that error-driven, rank-
based training of the new representation can improve
accuracy. In future work, we plan to investigate more
sophisticated prediction algorithms that alleviate the
greediness of local search, and also consider representa-
tions using features over entire clusterings.

Acknowledgements

This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA), through the Depart-
ment of the Interior, NBC, Acquisition Services Division,
under contract #NBCHDO030010, in part by U.S. Govern-
ment contract #NBCHO040171 through a subcontract with
BBNT Solutions LLC, in part by The Central Intelligence
Agency, the National Security Agency and National Sci-
ence Foundation under NSF grant #I1S-0326249, in part
by Microsoft Live Labs, and in part by the Defense Ad-
vanced Research Projects Agency (DARPA) under contract
#HR0011-06-C-0023.0

