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Differential Privacy (DP) enforcement in Federated Learning (FL) appears
at two granularities in the literature: (i) item level, and (ii) user level. In this
paper, we consider a third granularity of privacy – data subject level privacy,
where a subject is an individual whose private information is embodied by
several data items either confined within a single federation user or distributed
across multiple federation users. Neither item level nor user level privacy are
sufficient to enforce subject level privacy. We formally define the notion if
subject level DP for FL, and analyze its differences with item and user level
DP guarantees. Furthermore, we present two algorithms that enforce subject
level DP that build on the notion of group differential privacy. In the process
we make some interesting observations: Enforcement of subject level privacy
at individual users entails the same privacy even when subjects’ data items are
distributed over multiple users. Additionally, while both item and user level
DP are insufficient to enforce subject level DP, Local Differential Privacy
guarantees subject level privacy, even when a subject’s data items span across
multiple users.

1 INTRODUCTION
Federated Learning (FL) is a distributed training paradigm that lets
different parties (users) collaborate with each other to jointly train
a Machine Learning (ML) model [12]. In the process the users do
not share their private training data with any other users. FL provides
the benefit of the aggregate training data across all its users, which
typically leads to much better performing models. Critically, FL
automatically provides training data privacy since the data never
leaves the user’s device or silo. However, ML models are known
to learn the training data itself, which can leak out at inference
time [3, 15, 17, 22].

Differential Privacy (DP) provides a compelling solution to the
data leakage problem [5, 6]. Intuitively, a differentially private ver-
sion of an algorithm A introduces enough randomization in A that
makes it harder for an adversary to determine if any specific data item
was used as an input to A. In the case of ML models, DP ensures
that an adversary cannot determine if a specific data item was a part
of the training dataset.

For ML model training, DP is introduced in the model by adding
carefully calibrated noise during training. In the FL setting, this
noise is calibrated to hide either the use of any data item, called
item level privacy, or the participation of any user, called user level
privacy, in the training process [1, 14]. User level privacy is generally
understood to be a stronger privacy guarantee than item level privacy
since the former hides use of all data of each user, whereas the latter
may leak the user’s data distribution even if it individually protects
each data item [13, 14].

Item or user level privacy are perhaps the right privacy granularities
in the original cross-device FL setting consisting of millions of hand
held cell phones [2, 12] – an individual’s data typically resides in just
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one cell phone that participates in a federation. However, the cross-
silo FL setting [10], where federation users are organizations that
are themselves gatekeepers of data items of numerous individuals
(which we call “subjects” henceforth), offer much richer mappings
between subjects and their personal data.

As an example, consider an online retail store customer C. C’s
online purchase history is highly sensitive, and must be kept private.
At the same time,C’s purchase history contains a multitude of orders
placed by C in the past. Furthermore, C may be a customer at other
online retail stores. ThusC’s aggregate private data may be distributed
across several online retail stores. These retail stores could end up
collaborating with each other in a federation to train a model using
their customers’, including C’s, private purchase histories.

Item level privacy does not suffice to protect privacy of C’s data.
That is because item level privacy simply obfuscates participation
of individual data items in the training process [1, 5, 6]. Since a
subject may have multiple data items in the dataset, item level private
training may still leak a subject’s data distribution [13, 14]. User
level privacy does not protect the privacy of C’s data either. User
level privacy obfuscates each user’s participation in the training
process [14]. However, a subject’s data can be distributed among
several users. In the worst case, multiple federation users may host
only the data of a single subject. Thus C’s data distribution can be
leaked even if individual users’ participation is obfuscated.

Vertical FL [9, 20] is perhaps most closely related to our require-
ments for data subjects and their private data. In vertical FL, a sub-
ject’s features are partitioned between multiple users, and collabora-
tive learning between the users is necessary to train the model. While
this distributed nature of a subject’s features shares some traits with
our requirements for subject privacy, the work focuses on splitting
features between users, and does not consider subjects with multiple
data items. A combination of vertical FL and data subject privacy is
an interesting research topic that we leave for future work.

In this paper, we consider a third granularity of privacy – sub-
ject level privacy [21]1, where a subject is an individual whose
private data is spread across multiple data items, which can in turn
be distributed across multiple federation users. To the best of our
knowledge, this work is the first to formally characterize subject level
privacy in terms of the notion of subject level differential privacy.

We present two novel algorithms that achieve subject level DP.
Our algorithms leverage the intuition behind group differential pri-
vacy [5, 6], and use group composition results to dynamically enforce
group level privacy for data items belonging to the same subject. Our
first algorithm, called CentralSubDP, delegates subject level DP en-
forcement to a trusted central federation server. Our second algorithm,
called LocalSubDP, lets each user locally enforce subject level DP
guarantee, which automatically extends to subject level DP across
multiple users. We show that both our algorithms enforce subject
level DP. We also show that Local Differential Privacy [4, 11, 19, 23]

1 Wang et al. [21] identify what we call subjects in this paper as users in their paper.
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is a stricter privacy guarantee that subsumes subject level privacy.
Empirical evaluation of our algorithms is the subject of future work.

The rest of the paper is structured as follows: We present formal
definitions of DP and subject level DP in section 2. Our algorithms
are described in section 3, along with informal arguments of their
subject level DP guarantees. We also show that local DP subsumes
subject level DP. We conclude in section 4.

2 SUBJECT LEVEL DIFFERENTIAL PRIVACY
We begin with the definition of DP [5]. Informally, DP bounds the
maximum impact a single data item can have on the output of a
randomized algorithm A. Formally,

Definition 2.1. A randomized algorithm A : D → R is said
to be (ε,δ )-differentially private if for any two adjacent datasets D,
D ′ ∈ D, and set R ⊆ R,

P(A(D) ∈ R) ≤ eεP(A(D ′) ∈ R) + δ (1)

where D, D ′ are adjacent to each other if they differ from each other
by a single data item. δ is the probability of failure to enforce the ε
privacy loss bound.

The above definition directly provides item level privacy. McMa-
han et al. [14] present an alternate definition for user level DP in the
FL setting. Let U be the set of n users participating in a federation,
and Di be the dataset of user ui ∈ U. Let DU =

⋃n
i=1 Di . Let M

be the domain of models resulting from the FL training process.

Definition 2.2. Given a FL training algorithm F : DU → M,
we say that F is user level (ε,δ )-differentially private if for any two
adjacent user sets U , U ′ ⊆ U, and R ⊆ M,

P(F (DU ) ∈ R) ≤ eεP(F (DU ′) ∈ R) + δ (2)

where U , U ′ are adjacent user sets differing by a single user.

Let S be the subjects whose data is hosted by the federation’s users
U. Our definition of subject level DP is based on the observation that,
even though the data of individual subjects s ∈ S may be physically
scattered across multiple users in U, the aggregate data across U

can be logically divided into its subjects in S (i.e. DU =
⋃
s ∈S Ds ).

Definition 2.3. Given a FL training algorithm F : DU → M, we
say that F is subject level (ε,δ )-differentially private if for any two
adjacent subject sets S , S ′ ⊆ S, and R ⊆ M,

P(F (DS ) ∈ R) ≤ eεP(F (DS ′) ∈ R) + δ (3)

where S and S ′ are adjacent subject sets if they differ from each other
by a single subject.

Note that our definition completely ignores the notion of users in
a federation. This user obliviousness is crucial to make the definition
work for both cases: (i) where a subject’s data items are confined
to a single user (e.g. for cross-device FL settings), and (ii) where a
subject’s data items are spread across multiple users (e.g. for cross-
silo FL settings) [21].

3 ENFORCING SUBJECT LEVEL DIFFERENTIAL
PRIVACY

As noted earlier, guaranteeing item level DP in a randomized algo-
rithm A is insufficient for subject level DP since item level DP ob-
fuscates just a single data item’s contribution to A’s output, whereas
hiding a subject may entail obfuscation of multiple data items be-
longing to that subject. Similarly, guaranteeing user level DP in A

is insufficient for subject level DP since user level DP obfuscates a
single user’s contribution to A’s output, whereas hiding a subject
may entail obfuscation of multiple users’ data items belonging to that
subject. Intuitively, to enforce subject level DP, we need to obfuscate
the effects of a group of data items belonging to the same subject.
We can apply formalism of group differential privacy [6] to achieve
this group-level obfuscation. Formally (from [6]),

THEOREM 3.1. Any (ε,δ )-differentially private randomized algo-
rithm A is (дε,дe(д−1)εδ )-differentially private for groups of size д.
That is, given two д-adjacent datasets D and D ′, and R ∈ M, where
M is the output space domain,

P(A(D) ∈ R) ≤ eдεP(A(D ′) ∈ R) + дe(д−1)εδ (4)

where D and D ′ are д-adjacent if they differ from each other in д
data items.

Clearly, group DP incurs linear penalty on the privacy loss term ε,
and an even bigger penalty in the failure probability term (дe(д−1)εδ ).
Nevertheless, if д, is restricted to a relatively small value (e.g. 2) the
group DP penalty may be acceptable.

Theorem 3.1 is a bi-directional implication. So it can be restated
as follows:

THEOREM 3.2. Any (E,∆)-group differentially private algorithm

A, for a group size of д, is (E/д,∆/(дe(д−1) Eд )-differentially private.

In the FL setting, subject level DP immediately follows from group
DP for every sampled mini-batch of data items at every federation
user. Let S be a sampled mini-batch of data items at a user ui , and M

be the domain space of the ML model being trained in the FL setting.

THEOREM 3.3. Let training algorithm Aд : S → M be group
differentially private for groups of size д, and l be the largest number
of data items belonging to any single subject in S . If l ≤ д, then Aд
is subject level differentially private.

Composition of group DP guarantees over multiple mini-batches
and training rounds also follows established DP composition re-
sults [1, 7, 16]. For instance, the moments accountant method by
Abadi et al. [1] shows that given an (ε,δ )-DP gradient computa-
tion for a single mini-batch, the full training algorithm, which con-
sisting of T mini-batches and a mini-batch sampling fraction of q,
is (O(qε

√
T ),δ )-differentially private. Theorem 3.1 implies that the

same algorithm is (O(дqε
√
T ,дe(д−1)εδ )-group differentially private

for a group of size д.
We now present two new FL training algorithms that guarantee

group DP, which as per Theorem 3.3 implies subject level DP. In both
the algorithms, the federation server first initializes the common DNN
model and distributes it to the users. We make a critical assumption
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in these algorithms: Each user can determine the subject for any of
its data items. Absent this assumption, the user may need to make
the worst case assumption that all data items used to train the model
belong to the same subject.

3.1 CentralSubDP
CentralSubDP, which is based on FedSGD [12], enforces subject
level privacy at the federation server. In FedSGD [12], the federation
server randomly samples a set of users and sends them a request
to train the previously shipped model. Each user in turn computes
gradients of a randomly selected mini-batch of local data, and then
returns the gradients to the federation server. The federation server
accumulates the received gradients, averages them over all responses
from users, applies the gradients to its common model, and then
redistributes the updated model to the users. This is a single training
round. The federation server repeats this process until convergence
or a threshold number of training rounds has elapsed.

Algorithm 1: Pseudo code for CentralSubDP that guarantees
subject level DP.
Parameters: Set of n users U = ui ,u2, ...,un ; Di , the

dataset of user ui ; M , the model to be trained; θ ,
the parameters of model M ; gradient norm
bound C; mini-batch size B; largest group size
in a mini-batch Z ; noise scale σZ for group size
Z ; R training rounds; the learning rate η.

1 User_CentralSubDP(ui ):
2 S = random sample of B data

items from Di

3 for si ∈ S do
4 Compute gradients:
5 д(si ) = ▽L(θ, si )
6 Clip gradients:
7 д̄(si ) = Clip(д(si ), C)

8 end
9 Z = LrдGrpCnt (S )

10 return 1
B
∑
i д̄(si ), Z

11 Server_CentralSubDP():
12 for r = 1 to R do
13 Us = sample s users from U

14 G̃ = 0
15 for ui ∈ Us do
16 д̄s , Z =

User_CentralSubDP(ui )
д̃s =
д̄s + 1

B N(0, σ 2
ZC

2I)
17 G̃ = G̃ + д̃s
18 end
19 θ = θ − η G̃s
20 Send M to all users in U

21 end
22

Algorithm 1 shows the pseudo code of CentralSubDP. Like prior
work [1, 14, 18], we enforce DP in CentralSubDP by adding care-
fully calibrated Gaussian noise in each mini-batch’s gradients. Each
user clips gradients for each data item in a mini-batch to a clipping
thresholdC prescribed by the federation server. The clipped gradients
are subsequently averaged over the mini-batch. The clipping step
bounds the sensitivity of each mini-batch’s gradients toC. To enforce
group DP, the user also tracks the item count of the subject with the
largest number of items in the sampled mini-batch.

Along with mini-batch gradients, the federation user returns the
largest item count for that mini-batch to the federation server. The

count lets the federation server know the group size needed to enforce
group DP for that mini-batch. This group size, Z in Algorithm 1,
helps determine the noise scale σZ , given the target privacy param-
eters (E,∆) over the entire training computation. More specifically,
we use the moments accountant method and Theorem 3.2 to calculate
σ for ε = E/Z , and δ = ∆/(Ze(Z−1) EZ ). Note that the value of Z can
vary between mini-batches, due to which we represent the noise scale
as σZ in the pseudo code. The rest of the parameters to calculate
σZ – E, ∆, total number of mini-batches (sR), and sampling fraction
(B/total dataset size) – remain the same throughout the training
process.

The server adds appropriate amount of noise to gradients received
from each user, and then averages the gradients before applying them
to the model’s parameters using the prescribed learning rate. Like
FedSGD, the server broadcasts the updated model to users and repeats
with the next training round, if any.

It is straightforward to see that the calculation of σZ enforces
(E/Z ,∆/(Ze(Z−1) EZ )-differential privacy, which by Theorem 3.2 im-
plies (E,∆)-group differential privacy, hence subject level DP by The-
orem 3.3.

3.2 LocalSubDP

Algorithm 2: Pseudo code for LocalSubDP that guarantees
subject level DP.

Parameters: Set of n users U = ui ,u2, ...,un ; Di , the
dataset of user ui ; M , the model to be trained; θ ,
the parameters of model M ; gradient norm
bound C; sample of users Us ; mini-batch size B;
Z , largest group size in a mini-batch, σZ , noise
scale for group of size Z ; R training rounds; T
batches per round; the learning rate η.

1 User_LocalSubDP(ui ):
2 for t = 1 to T do
3 S = random sample of B

data items from Di

4 for si ∈ S do
5 Compute gradients:
6 д(si ) = ▽L(θ, si )
7 Clip gradients:
8 д̄(si ) = Clip(д(si ), C)

9 end
10 Z = LrдGrpCnt (S )
11 д̃s = 1

B (
∑
i д̄(si ) +

N(0, σ 2
ZC

2I))

12 θ = θ − η д̃ss
13 end
14 return M
15

16 Server_LocalSubDP():
17 for r = 1 to R do
18 Us = sample s users from

U

19 for ui ∈ Us do
20 θi =

User_LocalSubDP(ui )
21 end
22 θ = 1

s
∑
i θi

23 Send M to all users in U

24 end

LocalSubDP, which is based on DP-SGD [1], enforces subject
level privacy locally at each user. DP-SGD was originially not de-
signed for a FL setting, but can be easily tweaked to enforce item
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level DP in the FL setting: The federation server samples a random set
of users for each training round and sends them a request to perform
local training. Each user in turn trains for a multitude of mini-batches,
even multiple epochs, and introduces carefully calibrated Gaussian
noise in parameter gradients computed for each mini-batch. For each
mini-batch, gradients are computed for each data item separately, and
clipped to the threshold C to bound the gradients’ sensitivity. The
gradients are then summed over the full mini-batch, and Gaussian
noise scaled toC is added to the sum. This sum is then averaged over
the mini-batch size, and applied to the parameters. The users ship
back updated model parameters to the federation server, which then
simply averages the updates received from all the sampled users. The
server redistributes the updated model and triggers another training
round if needed.

In the original paper [1], Abadi et al. also proposed the moments
accountant method for tighter composition of privacy loss bounds
compared to prior work on strong composition [7]. The same compo-
sition results trivially apply to the algorithm described above.

The algorithm described thus far enforces item level DP. We ex-
tend it to support subject level DP in a manner similar to Central-
SubDP. Our algorithm appears in Algorithm 2. We compute each
mini-batch’s group size Z as the largest number of items of any sub-
ject appearing in the mini-batch. We use Z , and other parameters
(E, ∆, number of mini-batches TR, and the mini-batch sampling
fraction B/|Di |), to compute the appropriate value of σZ , and sub-
sequently add the computed noise to the mini-batch gradients’ sum
before averaging. As in the case of CentralSubDP, LocalSubDP en-
forces (E/Z ,∆/(Ze(Z−1) EZ )-differential privacy, which by Theorem
3.2 implies (E,∆)-group differential privacy, hence subject level DP
by Theorem 3.3.

Although both our algorithms add noise at the granularity of in-
dividual mini-batches belonging to individual users, they enforce
subject level DP even for subjects whose data items are distributed
across multiple users. This is because, intuitively, each subject’s sig-
nal in a mini-batch is completely obfuscated by noise added to the
mini-batch. Therefore, even though a subject’s data items appear in
mini-batches of multiple users in a single training round, each of
those mini-batches individually obfuscate that subject’s signal. Thus,
in the aggregate, the entire signal of the subject (over all sampled
users’ mini-batches in a training round) is completely obfuscated.
This intuition is trivially provable for CentralSubDP due to the ad-
ditivity property of Gaussian noise (due to averaging of gradients –
line 20 in Algorithm 1).

3.3 Local Differential Privacy
In certain settings, the user does not trust the federation server, or
is prohibited to share unperturbed model parameter updates or gra-
dients due to specific interpretations of localization laws [8]. As a
result, the user may need to perturb model parameters before ship-
ping them back to the federation server. This setting has an uncanny
resemblance to the motivation for classic Local Differential Pri-
vacy [4, 11, 23], where a data analyst can get access to the data only
after it has been perturbed. Work on LDP in the FL setting has just
begun [19]. In the FL setting, LDP is a much stronger privacy guar-
antee than item or user level DP in that it completely obfuscates the

signal from a user to the extent that an adversary, even the federation
server, cannot tell the difference between the signals coming from
any two different users.

Definition 3.4. We say that FL algorithm F : U → M is user
level local (ε,δ )-differentially private, where U is the set of users
in the federation and M is the domain of parameters of the model
getting trained, if for any two users u1,u2 ∈ U, and S ⊆ M,

P(F (u1) ∈ S) = eεP((u2) ∈ S) + δ (5)

In this paper we do not propose a new local DP algorithm. How-
ever, we note that local DP is a stronger privacy guarantee than
subject level DP. Intuitively, this is because by definition, a local DP
algorithm must locally obfuscate the entire signal of every user [19].
Whereas subject level DP entails obfuscating the signal correspond-
ing to any single subject. In the extreme case, where a user’s signal
is completely dominated by a single subject, we find an equivalence
between locally enforced subject level DP (e.g. LocalSubDP) and
local DP. Furthermore, similar to CentralSubDP and LocalSubDP,
enforcing user level local DP ensures subject level DP even for the
subjects whose data items are distributed among multipled users. We
leave out a more formal treatment of these observations from this
paper due to space restrictions.

4 CONCLUSION
While various prior works on privacy in FL have explored DP guaran-
tees at the user and item levels [13, 14], to the best of our knowledge,
no prior work has studied subject level granularity for privacy, where
a subject is an individual who has multiple data items in the FL train-
ing dataset, potentially distributed across multiple federation users.
In this paper, we presented a formal definition of subject level DP.
We also presented two novel FL training algorithms that guarantee
subject level DP. Our algorithms leverage the insight that data items
of a single subject form a group, and enforcing group DP on each
mini-batch’s training output is sufficient to enforce subject level DP.
We furthermore observed that local DP is a stronger privacy guaran-
tee that can be used to enforce subject level DP guarantee. We leave
more thorough formal treatment of subject level DP guarantees of
our algorithms, as well as their empirical evaluation for future work.
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