
Selecting Actions for Resource-bounded
Information Extraction using Reinforcement Learning

Pallika Kanani
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA, USA

pallika@cs.umass.edu

Andrew McCallum
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA, USA

mccallum@cs.umass.edu

ABSTRACT
Given a database with missing or uncertain content, our goal
is to correct and fill the database by extracting specific in-
formation from a large corpus such as the Web, and to do
so under resource limitations. We formulate the informa-
tion gathering task as a series of choices among alternative,
resource-consuming actions and use reinforcement learning
to select the best action at each time step. We use tempo-
ral difference q-learning method to train the function that
selects these actions, and compare it to an online, error-
driven algorithm called SampleRank. We present a system
that finds information such as email, job title and depart-
ment affiliation for the faculty at our university, and show
that the learning-based approach accomplishes this task effi-
ciently under a limited action budget. Our evaluations show
that we can obtain 92.4% of the final F1, by only using 14.3%
of all possible actions.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Algorithms

Keywords
Resource-bounded Information Extraction, Active Informa-
tion Acquisition, Reinforcement Learning, Web Mining

1. INTRODUCTION
Resource-bounded Information Extraction (RBIE) is the

process of searching for and extracting specific pieces of in-
formation from an external information source under a lim-
ited budget of resources, such as computation time, network
bandwidth, and storage space [5]. The problem of missing
information in databases is ubiquitous. However, in many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’12, February 8–12, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-0747-5/12/02 ...$10.00.

cases, this information is available on some external source,
such as the Web. In order to fill in the missing slots, we
need a mechanism to automatically extract the required in-
formation. In such settings, it is undesirable, infeasible, or
even computationally intractable to use traditional informa-
tion extraction pipelines on the entirety of a vast, external,
unstructured or semistructured corpus in order to obtain a
relatively small amount of information. Under the RBIE
framework, we obtain the required information by issuing
appropriate queries to the external source, such as a web
search API, downloading only a small fraction of documents
from the search results, and processing even fewer of them
to extract the specified field.

Consider a real world example. We are building a database
of all faculty at a university as shown in Table 1. We have the
names, but some of the other information such as contact de-
tails, job titles and department affiliations are missing. Sur-
prisingly, in some cases, the university administration does
not have such a comprehensive, university-wide database.
This may be due to the lack of data exchange, joint ap-
pointments across departments, changing contact details,
etc. Building such a database would be extremely useful,
since it maintains up-to-date records of the faculty, and fos-
ters collaboration across departments. A large portion of
this information exists on the Web, but it may not always be
found on faculty home pages. Lecturers and faculty in some
of the departments do not have home pages, and their in-
formation is sometimes scattered around the Web. Finding
this information can be challenging, since it is not available
in a uniform, structured manner. There are other problems
such as name ambiguities and incorrect or incomplete data.

One way to obtain this information is by crawling all the
websites under the university domain. This, by itself is a
resource-intensive task, since most university websites are
large and complex, and we would need to use a lot of com-
putational power to crawl and download the pages, along
with the corresponding network bandwidth, and disk space
for storing them. We would also lose out on all the infor-
mation that is scattered on the Web, outside the university
domain. Can we accomplish the same task using a much
smaller fraction of these resources?

We know that the information missing in the database is
available on some relatively small number of pages on the
Web. We need to run some extraction algorithms on those
pages in order to obtain the required information. But be-
fore we can run extraction, we need to download them to
our computing infrastructure, and before we can download
them, we need to know where they are located on the Web.

Faculty Name Phone Email Job Title Department Name

Andrew McCallum (413) 545-1323 mccallum@cs.umass.edu Professor Computer Science
Jerrold S. Levinsky ? ? Lecturer Legal Studies

Edward G. Voigtman ? ? ? ?
Robert W. Paynter ? ? ? Anthropology

Table 1: Example Database of University Faculty

A search engine API, such as Google can help us retrieve
these web pages. We first formulate queries driven by in-
formation that is already available in the database, issue
them to the search interface, obtain the location of the web
pages, and download them. Then we can run the necessary
algorithms to extract information, and use it to fill missing
entries in the database. This process is more efficient than
indiscriminate processing, and would use relatively smaller
amounts of resources.

The problem of Resource-bounded Information Extrac-
tion (RBIE) was first introduced in our previous work [5].
Queries are formed by combining existing, relevant informa-
tion in the database with user defined keywords. All such
queries are issued to the search API, and all of the result
documents are downloaded. The resource savings come from
selecting a subset of the web documents to process by ex-
ploiting the network structure in the data. In general, we
may need multiple queries to obtain information about a
single entry in the database, and some queries work better
than others. In our university faculty example, we may form
different queries with keywords such as“curriculum vitae”or
“home page”, and it may be the case that one of them is of-
ten more successful than the other in finding the information
we need. In some cases, the information in different fields
may be interdependent, and finding one before another may
be more efficient. In order to make the best use of available
resources, we need to issue the most effective queries first.

In most scenarios, one only need process a subset of the
documents returned by the queries. We need to know which
of the search results are most likely to contain the informa-
tion we are looking for. Information returned in the search
result snippet can be exploited to decide if a web page is
worth downloading. Similarly, some preliminary observa-
tion of the downloaded document can be useful to decide if
it is worth passing through an expensive extraction pipeline.
Hence, instead of viewing RBIE as selecting a subset of doc-
uments to process, we cast the information-gathering task as
a series of resource-consuming actions, along with a mecha-
nism to select the best action to perform at each time step.

In this paper, we formulate the RBIE problem formally as
a Markov Decision Process (MDP), and propose the use of
reinforcement learning techniques for solving it. The state of
this MDP is the state of the database at each time step, and
action is any act that leads to obtaining the required infor-
mation, such that performing the action in one state leads to
a different state. RBIE process is then finding the optimal
policy in this MDP, so as to obtain most information with
the given budget of actions, since we assume that actions
consume resources. In RBIE from the Web context, actions
are query, which is issuing a query to a search API, down-
load, which is downloading a web document, and extract,
which runs an actual extraction algorithm on a document.
We assume uniform cost for each type of action in this pa-
per, but the proposed framework can easily be extended by

incorporating a specific cost model for the actions and as-
signing the budget accordingly. By formulating RBIE for
the Web as an MDP, we can explore the rich methods of
optimal action selection offered by reinforcement learning.

In the RBIE for the web setting, query actions might not
lead to immediate reward, but they are necessary to per-
form before download and extract actions, which may lead
to positive rewards. Hence, we need a method that models
delayed rewards effectively. We propose the use of temporal
difference q-learning to learn the value function for select-
ing the best action from a set of alternative actions, given
a certain state of the database. In our preliminary work
[4], we explored a fast, online, error driven algorithm, called
SampleRank to learn this value function. Since both Sam-
pleRank and q-learning are novel approaches for the RBIE
framework, we compare their relative performance on the
task of finding emails, job titles and department affiliation
for faculty in our university.

In general, we can use any model of choice for information
extraction in our framework that can extract the required
information from a web page, and provide a confidence score
for the extracted value. This score can be used to choose the
best among the potential candidate values, and to determine
whether or not an existing entry in the database should be
updated by the newly extracted value. We present a sim-
ple, but novel information extraction method that can easily
scale to large problem domains. The basic idea is to gener-
ate a list of potential candidate values from the web page,
and using a binary classifier, such as maximum entropy, to
classify them as being correct values or not, by observing
features of the context in which they are found. The candi-
date with the maximum probability of being correct is used
to fill the entry in the database.

Our experiments show that the q-learning strategy per-
forms better than the baseline action selection strategies, as
well as SampleRank based approach to learning a value func-
tion. Given the large number of actions to choose from at
each time step, and the size of the corresponding state space,
the policy learned is impressive. The q-learning based ap-
proach is able to obtain 92.4% of the final F1, by only using
14.3% of all possible actions, demonstrating the effectiveness
of our method.

2. RESOURCE-BOUNDED INFORMATION
EXTRACTION

2.1 General Problem Definition
The general problem of Resource-bounded Information

Extraction (RBIE) is defined as follows. We are given a
database with missing values in some of the entries, and
a set of possible actions to help acquire that information
from an external source, such as the Web. Select the best
action from the set of alternative actions available at each

time point, so as to acquire most information with the given
budget on the number of actions.

2.2 Resource-bounded Information Extraction
From the Web

For RBIE from the Web, we consider three different types
of actions - query, download, and extract. A query action
consists of issuing a single query to a web search API and ob-
taining a set of search results. In order to form the query, we
need to use some existing information from an input record
in the database and a set of keywords. A download action
consists of downloading the web page corresponding to a
single search result. Finally, an extract action consists of
performing extraction on the downloaded webpage to ob-
tain the required piece of information and using it to fill the
slot in the original database. Note that each instantiated
‘action’ consists of the type of action as well as its corre-
sponding argument, namely, what query to send for which
instance, which URL to download, or what page to extract.

In the case of RBIE from the Web, the query actions can
be initialized at the beginning of the task because we know
which instances have missing fields, and the types of queries
that can be used; but download actions and extract actions
are generated dynamically and added to the list of avail-
able actions. That is, after a query action is performed, the
download action corresponding to each of the search results
is generated. Similarly, after a web page is downloaded,
the corresponding extract action is generated. At each time
point, only the actions that are instantiated can be consid-
ered as alternative valid actions to be performed. The RBIE
task is to select the “best” action at each time point from a
set of all valid actions.

Before selecting an action to perform at each time step,
we need to consider several factors. We need to take into ac-
count the current state of the database, such as the number
of slots filled and the uncertainty about them. We need to
take into account the context provided by the intermediate
results of all the actions so far, such as the results of the
queries, pages that are not yet downloaded and processed.
Even if this context is not yet in the database, these interme-
diate results can provide valuable information for deciding
which action to select. Finally, we also need to consider the
properties of the candidate action itself, before selecting it.

We assume that we are given an existing model, Me for
extracting the required pieces of information from a single
web page. We also assume that this model provides a confi-
dence score for each value predicted. This score can be used
to choose the best among the potential candidate values,
and to determine whether or not an existing entry in the
database should be updated by the newly extracted value.

2.3 Markov Decision Process Formulation
In this paper, we cast the Resource-bounded Informa-

tion Extraction problem as solving a Markov Decision Pro-
cess (MDP), M , where the states represent the state of the
database at a given time, along with any intermediate results
obtained from the Web, and actions represent the query,
download, and extract actions as described in the previous
section. We represent state as a tuple St〈DBt, It, I ′t〉, where
DBt is the state of the database at time t, It is the list of
intermediate URL results and I ′t is the list of intermediate
page results obtained till time t. The MDP for RBIE is de-
scribed as a tuple, M〈S0, γ, T (S, a, S′), R(S)〉, where S0 is

Algorithm 1 Resource-bounded Information Extraction for
the Web Using Q-function

Input:
Database DB with missing entries, Ei
Learned Q-function Q(a, S)
Learned extraction model, Me

Time budget, b
Initialize all queries using keywords
t = 0
while t <= b do
at+1 = arg maxaQ(a, S)
if at+1 is a query action then

Issue query to a web search API
Enqueue corresponding download actions

else if at+1 is a download action then
Download the web page
Enqueue corresponding extract action

else if at+1 is an extract action then
Extract all candidate values from the web page
Score each candidate using the model, Me

Fill the value of the best candidate in Ei
end if
t = t+ 1

end while

the initial state of the database, γ is the discount factor,
T (S, a, S′) is the state transition probability, or the proba-
bility that action a in state S at time t will lead to state S′

at time t + 1, and R(S) is the reward function for being in
state S.

One of the standard ways of solving an MDP is q-learning[15],
which provides a way to learn to select the best action at
each time step. The Q-function, Q(a, S) is the expected util-
ity of taking action a in state, S. Hence, the best action to
select at each step is:

at+1 = arg max
a

Q(a, S) (1)

Algorithm 1 summarizes the RBIE for Web framework for
filling missing information in a database using Q-function.

2.4 Learning Q-function
At the heart of solving an MDP for RBIE is the Q-function,

Q(a, S). We now discuss a method to learn it from real data.
Much of the material in this section follows from [12, 14].

We know that Q-function obeys the following constraints:

Q(a, S) = R(S) + γ
X
S′

T (S, a, S′) max
a′

Q(a′, S′) (2)

To use this update equation, we need to learn the transition
probability model, T (S, a, S′), which is difficult in our setup.
Hence, we use the temporal-difference, or TD q-learning ap-
proach, which is also called model-free, because it lets us
learn the Q-function without using the transition probabil-
ity model. The update equation for TD q-learning is 1:

Q(a, S)← Q(a, S) + α(R(S′) + γmax
a′

Q(a′, S′)−Q(a, S))

(3)

1There is some disagreement amongst q-learning experts
about which form of reward function to use. We choose
to use R(S′).

Algorithm 2 Temporal difference q-learning for RBIE, with
ε-greedy exploration

Input:
Training database, DB
Initial parameters, θ
Q Function, Qθ(a, S) =

P
i θiφi(a, S)

Reward Function, R(S)
Learning Rate, α
Discount factor, γ

S0 ← Initial State of DB
for t← 0 to number of iterations T do
ε = 1− 1

T
With probability ε, pick a random action, at
With probability 1− ε, pick at = arg maxaQθt(a, St)
St+1 = at(St) //perform at
Let a′ be all the valid actions from state, St+1

for i = 0 to number of features do
θit+1 = θit + α[R(St+1) + γmaxa′ Qθt(a′, St+1) −
Qθt(at, St)]φi(at, St)

end for
end for

Where, α is the learning rate. For any real-world RBIE task,
the state space for the corresponding MDP is large enough
to make it very difficult to learn this function accurately.
Hence, we use function approximation. We represent the
Q-function as a weighted combination of a set of features as
follows:

Qθ(a, S) =
X
i

θiφi(a, S) (4)

Where φi(a, S) are the features of the state S and action
a, and θi are the weights on those features that we wish to
learn. We now use the following equation [12, 14] for updat-
ing the values of θi to try to reduce the temporal difference
between successive states.

θi ← θi+α

»
R(S′) + γmax

a′
Q̂θ(a

′, S′)− Q̂θ(a, S)

–
∂Q̂θ(a, S)

∂θi
(5)

We can now use this update equation to learn the parameters
of our Q-function from training data. The TD-q-learning al-
gorithm for RBIE is described in Algorithm 2. Note that we
use ε-greedy approach for exploring the state space, where ε
decreases in proportion to the number of training iterations.

We also need to design a custom reward function, R(S)
for using this algorithm. Under the RBIE from the Web
setting, we can compute value of the reward function after
performing action at+1 on St = 〈DBt, It, I ′t〉 as a weighted
sum of correct, incorrect and total number of filled values,
number of correct candidates found, and some properties of
the intermediate results.

2.5 Building the Extraction Model
In general, we can use any model of choice for information

extraction in our framework that can extract the required
information from a web page, and provide a confidence score
for the extracted value. In this section, we present a sim-
ple, but novel information extraction method that can easily
scale to large problem domains. The basic idea is to gener-
ate a list of potential candidate values from the web page,
and using a binary classifier, such as Maximum Entropy, to
classify them as being correct values or not, by observing

features of the context in which they are found. Algorithm
3 describes how we train the model.

Let E be the set of entries with missing values in the
database. We use patterns and lexicons to generate a list
of candidates, CEi for each entry, Ei ∈ E. A candidate is a
unique string that is a potentially correct value for an entry
in the database. Each candidate, cj ∈ CEi , consists of a
list of mentions, Mj , which represent the actual occurrence
of the candidate string in the web documents. Each candi-
date may have multiple mentions, across different web pages.
Corresponding to each mention, mk ∈Mj , we have a list of
properties, or features, f(mk) which describe the context in
which it was found. Since we are interested in classifying
the single, canonical value of these mentions, i.e, the candi-
date, we collapse the properties of different mentions for a
candidate cj into a single feature function, f(cj).

Let yij be a binary variable that represents whether cj is
the correct value for entry Ei. We can then represent the
probability of cj being the correct candidate as:

P (yij |cj) =
1

Z
exp(

X
l

λlfl(cj , yij)) (6)

Where, λl are the weights on the features, and Z, the nor-
malization factor is given by:

Z =
X
y

exp(
X
l

λlfl(cj , yij)) (7)

Since this is a supervised approach, our training data con-
sists of the true values of E, which can be used to train the
classifier. At test time, during an extract action, we classify
each cj ∈ CEi at that time point, and select the one with
the maximum posterior probability, P (yij |cj), as the “best”
candidate to fill the slot.

3. SAMPLERANK FOR RBIE
In our preliminary work, we explored a different approach

to learning a value function for selecting actions for a differ-
ent problem domain[4]. We use a fast, online, error driven
learning algorithm, called SampleRank [1, 16]. Since, we are
also interested in investigating the effectiveness of the Sam-
pleRank approach in our current problem domain, we give
its brief introduction here. For further details on training
SampleRank for RBIE, refer to [4].

Remember that we represent a state as, St〈DBt, It, I ′t〉.
Our goal is to learn a value function similar to the Q-function,
called V (DBt, It, I

′
t, a), which is used to select the best ac-

tion in a given state. In order to learn this function from
training data, we first assume that its functional form is as
follows:

V (DBt, It, I
′
t, a) = exp(

X
k

λkφk(DBt, It, I
′
t, a)) (8)

Where, λk are model parameters and φk are feature func-
tions, defined over the database context, the current action,
and the results of all previous actions.

We start training with state S0, that represents the origi-
nal state of the database. We consider all available actions at
this point, and sample from states that result from these ac-
tions. We choose the state S∗, which is the result of the best
action a∗, predicted by V , and the state S′, which is the best
state predicted by the objective, or reward function, R(S).
SampleRank is an error driven learning algorithm, which

Algorithm 3 Building Extraction Model, Me

Input:
Training Database DB with entries, E
Pattern or Lexicon Matcher, L(w) that returns a set
of matches, Mw from a Web Page, w
Feature functions, f(.) describing context of Mw

A Supervised Learning algorithm, such as Max Ent
Initialize all queries using keywords
Initialize set of potential candidates per entry, CEi = {}
Initialize set of candidates for training, Ct = {}
while Any more actions remain do

Pick a random action, a to perform
if a is a query action, or a download action then

Perform a and enqueue corresponding download or
extract actions

else if a is an extract action for Web Page, w then
Mw ← L(w)
for Each match, mk ∈Mw do

if String value (mk) matches cj ∈ CEi then
Add mk as a mention of cj
Merge the features, f(mk) with f(cj)

else
Create a new candidate, cj , and add to CEi

label(cj)← string value (cj) = true value (Ei)?
Add mk as a mention of cj
Set f(cj)← f(mk)

end if
end for

end if
end while
for all CEi do
Ct ← Ct ∪ CEi

end for
Me ← Train a Max Ent classifier with f(ct), for ct ∈ Ct

lets us update parameters when the function learned up to
a given point makes a mistake. We say the ranking is in
error if the function learned so far assigns a higher score to
the sample with the lower objective, or reward value, R(S),
i.e.:

[(VΛ(S∗) > VΛ(S′)) ∧ (R(S∗) < R(S′))]∨
[(VΛ(S∗) < VΛ(S′)) ∧ (R(S∗) > R(S′))]

(9)

When this condition is true, we update the parameters, Λ
using perceptron update as follows:

Λt ⇐ Λt−1 + α(φ(S′t, a
′
t)− φ(S∗t , a

∗
t)) (10)

where α is the learning rate used to temper the parameter
updates. Note that SampleRank is a special case of rein-
forcement learning, which makes the comparison between
the two approaches very interesting.

4. RELATED WORK

4.1 Resource-bounded Reasoning
Knoblock et al. [7] introduced the idea of using plan-

ning for information gathering, followed by the development
of resource-bounded reasoning techniques by Zilberstein et
al. [18]. Elliasi-Rad [2] explored the problem of building
an information extraction agent, but did not address the
problem of acquiring specific missing pieces of information

on demand. The problem of Resource-bounded Information
Extraction (RBIE) was first introduced in our previous work
[5], in which the main idea was to select a subset of the web
documents to process by exploiting the network structure in
the data. The example task in [5] is to find a missing year
of publication in citation data. All available queries are is-
sued, and all the search results are downloaded, which are
then filtered using a simple heuristic. The number of doc-
uments that need to be processed for extraction is reduced
by propagating information obtained from the Web through
the underlying citation graph structure. In our preliminary
work[4], we explored the task of finding URLs of the faculty
directory pages of top Computer Science departments in the
U.S., and used SampleRank for learning the value function.

4.2 Information Extraction From the Web
In the traditional information extraction settings, we are

usually given a database schema, and a set of unstructured
or semi-structured documents. The goal of the system is to
automatically extract records from these documents, and fill
in the values in the given database. These databases are then
used for search, decision support and data mining. In recent
years, there has been much work in developing sophisticated
methods for performing information extraction over a closed
collection of documents. Several different approaches have
been proposed for different phases of information extraction
task, such as segmentation, classification, association and
coreference. Most of these proposed approaches make ex-
tensive use of statistical machine learning algorithms, which
have improved significantly over the years. However, only
some of these methods remain computationally tractable as
the size of the document corpus grows. In fact, very few
systems are designed to scale over a corpus as large as, say,
the Web [3].

Among the large scale systems that extract information
from the Web are KnowItAll [3], InfoSleuth [11] and Kylin [17].
The goal of the KnowItAll system is a related, but differ-
ent task called, “Open Information Extraction.” In Open IE,
the relations of interest are not known in advance, and the
emphasis is on discovering new relations and new records
through extensive web access. In contrast, in our task, we
are looking for specific information and the corresponding
schema is known. The emphasis is mostly on filling the
missing fields in known records, using resource-bounded web
querying. InfoSleuth focuses on gathering information from
given sources, and Kylin focuses only on Wikipedia articles.

The Information Retrieval community is rich with work in
document relevance (TREC). However, traditional informa-
tion retrieval solutions can not directly be used, since we first
need to automate the query formulation for our task. Also,
most search engine APIs return full documents or text snip-
pets, rather than specific values. A closely related family of
methods is question answering systems. These systems do
retrieve a subset of relevant documents from the Web, along
with extracting a specific piece of information. However,
they target a single piece of information requested by the
user, whereas we target multiple, interdependent fields of a
relational database. QA usually interprets natural language
question, whereas we need a keywords based mechanism for
formulating queries. Most QA systems do not focus on pri-
oritizing information acquisition actions, and the ideas in
this paper could prove useful in building them. The seman-

tic web community has been working on similar problems,
but their focus is not targeted information extraction.

4.3 Active Information Acquisition
Learning and acquiring information under resource con-

straints has been studied in various forms. Active learning
selects the best instances to label from a set of unlabeled in-
stances; active feature acquisition [10] explores the problem
of learning models from incomplete instances by acquiring
additional features; budgeted learning [8] identifies the best
set of acquisitions, given a fixed cost for acquisitions. At
test time, the two common scenarios are selecting a subset
of features to acquire, e.g. [13], and selecting the subset of
instances for which to acquire features [6]. In our work, the
resource-constraints are only applied at test time, and avail-
ability of unlimited resources is assumed at training time.

5. EXPERIMENTS

5.1 Extracting Faculty Information
Given a list of names of university faculty, our goal is to ex-

tract their email address, job title and department affiliation
from the Web. In this section, we describe how we apply the
RBIE framework to build a system that can efficiently ac-
quire this information. We also describe experiments testing
the effectiveness of SampleRank and q-learning algorithms
in selecting the most effective actions at each time step.

This is a challenging task due to several factors. In some
cases, this information is readily available on faculty home
pages, which are semi-structured. However, lecturers and
faculty in many departments do not have home pages. Their
information is scattered around the Web, without a uniform
structure. Web pages are noisy, and may lead to unexpected
errors while performing extraction. Name ambiguity is an-
other challenge, since many of the faculty have common
names they share with other famous personalities. Some
information on the Web is stale, or contradicting. For ex-
ample, a faculty member can be listed on one page as “as-
sistant professor”, while on another as “associate professor”,
reflecting a recent change of title. Finally, some information
is not available on the Web at all.

5.2 Dataset Description
We start with a list of faculty from University of Mas-

sachusetts at Amherst. We randomly choose 100 of these
records as our dataset. The fields contain the first, middle
and last name of the faculty, their email address, a list of job
titles, and a list of department affiliations. Joint appoint-
ments lead to multiple job titles and department affiliations.
The dataset we received contains several inaccuracies and is
cleaned for better evaluation of our methods. For example,
in some cases, a single column contains names of different de-
partments. These are split into multiple columns. Punctu-
ation and abbreviations, such as “Assoc. Prof.” are cleaned
and expanded. Despite the cleaning effort, the dataset we
use is incomplete and contains errors. For example, the most
current job titles are not reflected, and only one email ad-
dress is included in the dataset, which may not be the one
used by the person, or published on the Web. These imper-
fections in the data make both training and evaluation of our
system challenging. Another problem in evaluating the ac-
curacy of our system is the “generic-specific” problem in de-
partment names. For e.g., our system might predict the de-

Dataset # Faculty # Queries # Docs Total Actions

Training 70 1400 13686 28772
Testing 30 600 6065 12730
Total 100 2000 19751 41502

Table 2: Datasets

Name Name + Univ
Name in quotes Name in quotes + Univ
Name In Univ Name in quotes In Univ
Name w/ middle In Univ Name w/ middle + Univ
Name + CV Name + Univ + CV
Name + “Resume” Name + Univ + “Resume”
Name + “Profile” Name + Univ + “Profile”
Name + “Bio” Name + Univ + “Bio”
Name + HomePage Name + HomePage In Univ
Name + “Contact” Name + “Contact” In Univ

Table 3: Types of Queries. ‘Name’ : first and last
name, ‘CV’ : “curriculum vitae”, ‘Univ’ : “univer-
sity of massachusetts at amherst” and ‘In Univ’ :
“site:umass.edu”

partment affiliation for a faculty as “finance”, while it might
be listed as “management” in the ground truth dataset, or
vice-versa. Since we use exact string match, we may even
miss a match such as “school of management”. Despite the
difficulties, it is an interesting real world task for RBIE.

We use the Google search API for our experiments. In
our task, the three fields that we extract are related to each
other and often found in the proximity of each other on the
same web pages. Hence, our query actions correspond to the
entire record in the database, as opposed to a single ‘entry’,
or cell. We formulate 20 different types of queries per fac-
ulty, as shown in Table 5.2, and consider top 20 hits returned
by the search API. Assuming that we are not operating un-
der resource-constraints, i.e., we perform all possible actions
available, we get the dataset as described by Table 2. This
table also helps estimate the size of the state space for our
problem.

5.3 Training the Extraction Models
Before we move to the action selection experiments, we

must build a model for extracting the relevant fields from
individual web pages. Section 2.5 describes the algorithm
we use for training the model. We use the MALLET [9]
toolkit’s implementation of the maximum entropy classifier.
The available data is first split by 70%-30% for training and
testing. The training phase for the extraction model is not
resource-constrained, i.e., we use all possible query, down-
load and extract actions.

The algorithm described in section 2.5 uses a pattern or
lexicon matcher that returns a set of matches from a web
page. These matches are added as a list of candidates to be
filled in the database entry. For emails, we use a regular ex-
pression to match all the emails found in the web document.
For job titles and department affiliations, we first build N-
grams from body of the web page, where N = 1, 2, 3, 4.
These N-grams are matched against lexicons to find candi-
date mentions in the web page. The features used to describe
the context of these matches are shown in Table 5.3. The
features across a mention are collapsed by using an ‘OR’ op-
erator, since they are mostly binary. That is, if any feature
is turned on in one of the mentions, it would be turned on

Features for Email Extractor

Type of query used
Email domain is from UMass

Web page domain name from UMass
Email host and web page URL host match
Relative position of faculty name and email

Match between faculty name and email username
Similarity between faculty sname and email username

Features for Job Title Extractor

Too many matches found on page
Web page domain name from UMass
Web page URL contains faculty name

Position of match on the document
The words “Assistant” or “Associate” preceds match

Relative position of faculty name and job title

Features for Department Extractor

Too many matches found on page
Web page domain name from UMass
Web page URL contains faculty name

Position of match on the document
The word “Department” precedes match

Relative position of faculty name and department name

Table 4: Features of the Extraction Models

Measure Email JobTitle Department

Accuracy 97.97 92.50 96.94
Yes Precision 77.78 36.36 54.54
Yes Recall 87.50 15.38 44.44
Yes F1 82.23 21.62 48.97
No Precision 99.28 94.15 98.11
No Recall 98.57 98.06 98.73
No F1 98.93 96.06 98.42

Table 5: Performance of the Extraction Models

for the candidate. In our early experiments, we found this
method perform better than other merging operations, how-
ever, in future, we can build a more sophisticated method.

Let us first study the performance of the candidate clas-
sifier, in isolation of the resource-bounded information ex-
traction task. Any inaccuracy in this model, will not only
result in poor accuracy during the RBIE process, but also
misguide it due to inaccurate confidence prediction. Table
5 shows the classification performance of Me. Note that
F1 is the harmonic mean of precision and recall. The main
reasons for relatively lower F1 values on this model are in-
accuracy of training data as described above, as well as the
noisy nature of the web data. The advantage of using this
model is that it is easy to build, and is scaleable for very
large scale problems. In the future, we would like to exper-
iment with a more sophisticated extraction model, in order
to facilitate better accuracy of the classifier, as well as the
RBIE process.

5.4 Evaluation
At test time, we start with the database that contains

names of faculty. All other columns are empty. We consider
this as time, t = 0. We assume that each action takes one
time unit. The action selection scheme that we are testing
selects one of the available actions, which is performed as
described in Algorithm 1. The action is then marked as
completed and removed from all available actions. If an
extraction action is selected, it may affect the database by

filling a slot and altering the confidence value associated
with that slot. We evaluate the results on the database at
the end of a given budget, b, or if we run out of actions.

We are interested in finding the email address, job title
and department affiliation, all of which can have multiple
true values. Note that this also includes minor variations.
Throughout our evaluations, we compare against the multi-
ple values of a column, and declare a match if the predicted
value matches at least one of them. We use the follow-
ing evaluation metrics to measure our system’s performance.
Since our task is slightly different from a traditional infor-
mation extraction task, we use the following definitions of
evaluation metrics. Note that extraction recall measures the
proportion of entries for which a true candidate value has
been extracted from the web page. It may or may not get
ranked as the “best” candidate. However, for the purpose of
evaluating the order of selecting the query, download and ex-
tract actions, this is a very important metric. Even though
at test time, it is independent of the performance of the un-
derlying extraction model, Me, it is still influenced indirectly
by Me through training.

Precision =
No. of Correctly Filled Entries in the Database

No. of Filled Entries in the Database

Recall =
No. of Correctly Filled Entries in the Database

No. of Test Entries in the Database

Extraction Recall = No. of Correct Candidates Extracted
No. of Test Entries in the Database

F1 = 2∗Precision∗Recall
(Precision+Recall)

5.5 Baselines
We use two baselines for our experiments : random, and

straw-man. At each time step, the random approach selects
an action randomly from all available actions. The straw-
man approach is actually an extremely strong competitor
and works as follows. The first query in the list is issued for
each test instance. Next, the first hit from the search result
for each test instance is downloaded and processed for ex-
traction. Then, subsequent hits from the search result for
each test instance are downloaded and processed. Finally,
subsequent queries are issued in the descending order, fol-
lowed by their corresponding download and extract actions.
Note that this approach quickly fills up the slots with the
top hits of the queries, making it a very difficult baseline to
beat.

5.6 Learning Q-function from Data
We now describe how parameters θ for Q-functionQθ(a, S)

are learned using training data. Table 5.6 shows the features
used. Note that at train time, we do not impose resource
constraints. That is, training is performed till more actions
are available. However, we only run Q-function parameter
updates for a given number of iterations, which acts as a
type of budget. We determine the number of iterations and
learning rate empirically.

Similar to the test time, we start with a database with the
email, job title and department name columns empty. The
true values of these columns are used only to calculate the
reward function. We initialize the parameters to zero. At
each time step, we explore all possible actions, and update
the parameters as described in Algorithm 2. We then choose
the next action to perform as per the updated parameters
and proceed similarly for the specified number of iterations.

Features related to query, download and extract actions

Type of query

Features related to download and extract actions

Hit value in the search result
URL is from UMass
Webpage is HTML

Title contains keywords
Title contains faculty name

Features related to extract actions

Appropriate Size
Bad request code found

Table 6: Features for learning using SampleRank
and Q-function

We use the following reward function for training. Here, n
is the number of slots filled in the database, d is the number
of slots filled correctly, d̄ is the number of slots filled incor-
rectly, m is the number of correct candidates found, and
Cn, Cd, Cd̄, and Cm are the corresponding coefficients. In
our initial experiments, using intermediate results was not
helpful.

R(St+1) = Cn ∗ n+ Cd ∗ d+ Cd̄ ∗ d̄+ Cm ∗m (11)

Since we are interested in comparing the SampleRank ap-
proach, we use the same features and reward function as q-
learning. We also introduce a variation of q-learning, where
the policy is initialized using the straw-man approach, fol-
lowed by the normal q-learning. In this case, a bias value
proportional to the rank of actions proposed by the straw-
man method is added to the q-function value for each state-
action pair. We call this method ‘biased-q-learning’ in our
experiments.

5.7 Results and Discussion
We now compare the test-time performance of the two

baselines, the value function learned using SampleRank, and
the Q-function on their ability to select good actions at each
time step. Note that we have already evaluated performance
of the extraction method, and we are now focussing on qual-
ity of the action selection strategy. We evaluate performance
after each 2000 actions from 0 to 14000 (since the total num-
ber of actions at test time is 12730). The most effective ac-
tion selection scheme is the one that is fastest in achieving
high values of evaluation metrics.

5.7.1 RBIE Using an Oracle
We first evaluate performance of the four action selection

schemes in the presence of an oracle that perfectly classifies
each candidate as the correct value for an entry or not with
infinite confidence. We do this to isolate the effect of in-
accuracies in the extraction model, Me, which can severely
misguide the RBIE system with wrong confidence values.
For e.g., even if the action selection scheme selects a good
web page for extraction, Me can choose the wrong candi-
date for updating the value in the corresponding slot. While
training the Q-function, this translates to incorrect reward
values, which can severely impede learning. Table 5 shows
that the F1 value for ‘yes’ label for each of the extractors
are not high enough to avoid these problems.

Figure 1 shows the extraction recall values during the
RBIE process for different fields, and the total number of
entries. Note that in the presence of an Oracle, other eval-

Frac. of Action Budget Frac. of Best Extraction Recall

00.00% 00.00%
14.29% 77.78%
28.57% 93.65%
42.86% 96.83%
57.14% 96.83%
71.43% 100.00%
85.71% 100.00%
100.00% 100.00%

Table 7: Effectiveness of Biased-Q-learning in ob-
taining extraction recall over total entries using an
oracle

uation metrics are not useful, since the precision is always
1, and the recall is the same as the extraction recall. We
ran 2000 training iterations of SampleRank, q-learning, and
biased-q-learning, with learning rate, α = 0.005, Cn = 0.01,
Cm = 1, Cd = 0.1, Cd̄ = −0.05, and a discount factor,
γ = 0.9 for this experiment.

As we can see, the straw-man method is extremely effec-
tive, because it knows to process the top hits for a good
query for each entry first. Given the complexity of the ac-
tion domain, and the size of the state space, this policy is
very difficult for a Q-learner to learn. It does, however,
learn to beat the random action selection, as well as the
value function learned by SampleRank. As expected, both
q-learning and biased-q-learning perform better than Sam-
pleRank due to their modeling of delayed rewards, despite
the use of exactly the same features and reward functions.
In the example of extracting emails, biased-q-learning out-
performs all other methods, while q-learning outperforms
other methods over total entries.

To gain some intuition about the policy learned by q-
learning, let us look at a few top features for each action
type. For query actions : query type with just the name of
the faculty, query type with the name of the faculty and the
keyword, ‘Homepage’. For download and extract actions :
the URL is html, URL is from a umass.edu domain, the title
contains faculty name, and combinations of the correspond-
ing query type and range of hit values. For extract actions,
it also learned high weights for features that looked at the
size of the documents. Hence, even though the straw-man
method has the advantage of background human knowledge,
such as the importance of hit value in the search engine re-
sults, the learning-based methods learn new and more elabo-
rate patterns that show relative usefulness of different types
of queries and help identify promising documents to process
by ‘examining’ them.

Table 7 presents the percentage of the best extraction re-
call obtained over total entries for the fraction of the ac-
tion budget. For example, 77.78% of the best achievable
extraction recall (using all available actions) is obtained us-
ing only 14.29% and so on. This shows that the proposed
RBIE methods can be effective in obtaining most of the use-
ful information using only a fraction of the resources. One
thing to note here is that even with using oracle we are not
able to achieve perfect extraction recall at the end of al avail-
able actions. This illustrates how challenging the problem
of finding information about people online is.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2000 4000 6000 8000 10000 12000 14000

Ex
tra

ct
io

nR
ec

al
l

Number of Actions

Random
Strawman

SampleRank
QLearning

BiasedQLearning

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2000 4000 6000 8000 10000 12000 14000

Ex
tra

ct
io

nR
ec

al
l

Number of Actions

Random
Strawman

SampleRank
QLearning

BiasedQLearning

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2000 4000 6000 8000 10000 12000 14000

Ex
tra

ct
io

nR
ec

al
l

Number of Actions

Random
Strawman

SampleRank
QLearning

BiasedQLearning

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2000 4000 6000 8000 10000 12000 14000

Ex
tra

ct
io

nR
ec

al
l

Number of Actions

Random
Strawman

SampleRank
QLearning

BiasedQLearning

Figure 1: RBIE Using the Oracle. The graphs from
top to bottom are : Email, Job Title, Department
Name and Total Entries

5.7.2 RBIE Using Extraction Model
We now study the performance of our proposed method

using an actual extraction model, Me. In this case, each
action selection strategy needs to balance both precision
and recall. We ran 1000 training iterations of SampleRank
(Cn = 1000, Cm = 10, Cd = 100, Cd̄ = −50), q-learning
(Cn = 1000, Cm = 10, Cd = 100, Cd̄ = −50), and biased-
q-learning (Cn = 0.01, Cm = 1, Cd = 0.1, Cd̄ = −0.05)
with learning rate, α = 0.005, and discount factor, γ = 0.9
for this experiment. Figure 2 shows the extraction recall,
precision, recall and F1 values for total number of entries
in the database. In these methods, precision and recall
curves go down towards the end of information gathering
process due to noise in the web data, and the extraction
process. As before, we see that the straw-man method per-
forms better initially. However, its precision and recall drops
mid-way through the information acquisition process, and
q-learning method performs better. q-learning also comfort-
ably out-performs random and SampleRank approaches. It
achieves 92.4% of the final F1, by only using 14.3% of the
total actions. This demonstrates the effectiveness of the pol-
icy learned by the Q-learner for selecting good actions for
information gathering task. We believe that with more ac-
curate labeling and a better extractor, q-learning method
can be shown to be even more efficient. Since SampleRank
provides a faster learning approach, we would like to fur-
ther investigate its applicability for this problem domain. A
potential improvement on this front could be achieved by
defining macro-actions that span multiple actions to better
model the delayed reward.

6. CONCLUSION AND FUTURE WORK
In this paper, we formulated the problem of RBIE for

the Web as a Markov Decision Process, and proposed the
use of temporal difference q-learning to solve it. We learn
a policy for effectively selecting information-gathering ac-
tions, leading to significant reduction in resource-usage. On
our example task of extracting faculty email, job titles and
department names, the q-learning based approach is able to
achieve 92.4% of the final F1, by only using 14.3% of the to-
tal actions. We also compare it to a fast, online, error-driven
algorithm called SampleRank [16], and found that q-learning
performs better due to it’s ability to model delayed reward.
We would like to further investigate the use of SampleR-
ank. We also presented a novel extraction technique that
can scale well for large scale, information gathering tasks.

The basic formulation of RBIE as an MDP opens up many
interesting avenues of research. Use of TD q-learning is one
of the first attempts to learn general information gathering
policies. More advanced techniques from the reinforcement
learning literature, such as SARSA or least-square policy it-
eration can be explored. This framework is extendable in
many ways. We can easily replace the candidate-mention
scheme described in the paper with a more sophisticated ex-
traction algorithm. We can also extend the set of informa-
tion gathering actions defined here to suit the specific needs
of a problem, and still use the general MDP framework. An-
other dimension to explore is the possibility for information
acquisition in parallel, which may lead to interesting new
methods. The success of such a learning based approach
can lead to its application in many resource-conscious, real-
world domains.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2000 4000 6000 8000 10000 12000 14000

F1

Number of Actions

Random
Strawman

SampleRank
QLearning

BiasedQLearning

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2000 4000 6000 8000 10000 12000 14000

Pr
ec

is
io

n

Number of Actions

Random
Strawman

SampleRank
QLearning

BiasedQLearning

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2000 4000 6000 8000 10000 12000 14000

R
ec

al
l

Number of Actions

Random
Strawman

SampleRank
QLearning

BiasedQLearning

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2000 4000 6000 8000 10000 12000 14000

Ex
tra

ct
io

nR
ec

al
l

Number of Actions

Random
Strawman

SampleRank
QLearning

BiasedQLearning

Figure 2: RBIE Using Extraction Model On Total
Entries. The graphs from top to bottom are : F1,
Precision, Recall and Extraction Recall

7. ACKNOWLEDGMENTS
This research draws on data provided by the University

Research Program for Google Search, a service provided by
Google to promote a greater common understanding of the
web. We thank Michael Wick and anonymous reviewers
for useful suggestions. This work was supported in part
by the CIIR and in part by the CIA, the NSA, and NSF
under NSF grant IIS-0326249 and NSF medium IIS-0803847.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author and do not
necessarily reflect those of the sponsor.

8. REFERENCES
[1] A. Culotta. Learning and inference in weighted logic

with application to natural language processing. PhD
thesis, University of Massachusetts, 2008.

[2] T. Eliassi-Rad. Building Intelligent Agents that Learn
to Retrieve and Extract Information. PhD thesis,
University of Wisconsin, Madison, 2001.

[3] O. Etzioni, M. Cafarella, D. Downey, S. Kok,
A. Popescu, T. Shaked, S. Soderland, D. Weld, and
A. Yates. Web-scale information extraction in
knowitall. In WWW, 2004.

[4] P. Kanani and A. McCallum. Learning to select
actions for resource-bounded information extraction.
UMass CS Tech. Report UM-CS-2011-042, 2011.

[5] P. Kanani, A. McCallum, and S. Hu.
Resource-bounded information extraction: Acquiring
missing feature values on demand. In PAKDD, 2010.

[6] P. Kanani and P. Melville. Prediction-time active
feature-value acquisition for customer targeting. In
Workshop on Cost Sensitive Learning, NIPS, 2008.

[7] C. A. Knoblock. Planning executing, sensing and
replanning for information gathering. In IJCAI, 1995.

[8] D. J. Lizotte, O. Madani, and R. Greiner. Budgeted
learning of naive-bayes classifiers. In UAI, 2003.

[9] A. K. McCallum. Mallet: A machine learning for
language toolkit. http://mallet.cs.umass.edu, 2002.

[10] P. Melville, M. Saar-Tsechansky, F. Provost, and
R. Mooney. An expected utility approach to active
feature-value acquisition. In ICDM, 2005.

[11] M. H. Nodine, J. Fowler, T. Ksiezyk, B. Perry,
M. Taylor, and A. Unruh. Active information
gathering in infosleuth. IJCIS, 9(1-2):3–28, 2000.

[12] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach (2nd Edition). Prentice Hall, 2003.

[13] V. Sheng and C. Ling. Feature value acquisition in
testing: a sequential batch test algorithm. In ICML’06.

[14] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[15] C. J. C. H. Watkins and P. Dayan. Q-learning.
Machine Learning, 8(3-4):279–292, 1992.

[16] M. Wick, K. Rohanimanesh, K. Bellare, A. Culotta,
and A. McCallum. Samplerank: Training factor
graphs with atomic gradients. In ICML, 2011.

[17] F. Wu, R. Hoffmann, and D. S. Weld. Information
extraction from wikipedia: moving down the long tail.
In SIGKDD, 2008.

[18] S. Zilberstein. Resource-bounded reasoning in
intelligent systems. ACM Comput. Surv, 28, 1996.

